The Solidification Segregation and Homogenization Behavior of a New Solid-Solution Strengthened Ni-Based Superalloy: Key Effects of Zr Microalloying

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhiqiang Yao, Jiaqi Wang, Jinrong Wu, Yunsheng Wu, Xianjun Guan, Xuezhi Qin, Lanzhang Zhou
{"title":"The Solidification Segregation and Homogenization Behavior of a New Solid-Solution Strengthened Ni-Based Superalloy: Key Effects of Zr Microalloying","authors":"Zhiqiang Yao,&nbsp;Jiaqi Wang,&nbsp;Jinrong Wu,&nbsp;Yunsheng Wu,&nbsp;Xianjun Guan,&nbsp;Xuezhi Qin,&nbsp;Lanzhang Zhou","doi":"10.1002/adem.202402608","DOIUrl":null,"url":null,"abstract":"<p>In this article, zirconium (Zr) microalloying plays a crucial role in regulating the solidification, segregation, and homogenization kinetics of a newly developed solid-solution strengthened Ni-based superalloy. Three alloy variants with distinct Zr contents (0.02, 0.08, and 0.22 wt%) are comprehensively analyzed using transmission electron microscopy, electron probe microanalysis, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The results show that Zr addition significantly widens the solidification temperature range ΔT (23, 26, and 36 °C), which aggravates interdendritic segregation of Zr, Mo, and Mn. Zr-rich MC carbides (0.036, 0.131, and 0.249 wt%) that precipitate at grain boundaries undergo progressive dissolution during homogenization at 1200 °C and are accompanied by an increase in the diffusion coefficients of elements (Cr: 4.99, 5.78, and 6.63 × 10<sup>−15</sup> m<sup>2</sup> s<sup>−1</sup>; Mo: 3.85, 5.31, and 6.55 × 10<sup>−15</sup> m<sup>2</sup> s<sup>−1</sup>). Consequently, an appropriate amount of Zr microalloying can facilitate elemental diffusion throughout the homogenization process. However, an excessive Zr addition will trigger severe elemental segregation during solidification, which has a detrimental impact on the hot workability of subsequent alloys. Finally, the synergistic effect is thoroughly discussed, and the optimal Zr content is determined.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402608","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, zirconium (Zr) microalloying plays a crucial role in regulating the solidification, segregation, and homogenization kinetics of a newly developed solid-solution strengthened Ni-based superalloy. Three alloy variants with distinct Zr contents (0.02, 0.08, and 0.22 wt%) are comprehensively analyzed using transmission electron microscopy, electron probe microanalysis, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The results show that Zr addition significantly widens the solidification temperature range ΔT (23, 26, and 36 °C), which aggravates interdendritic segregation of Zr, Mo, and Mn. Zr-rich MC carbides (0.036, 0.131, and 0.249 wt%) that precipitate at grain boundaries undergo progressive dissolution during homogenization at 1200 °C and are accompanied by an increase in the diffusion coefficients of elements (Cr: 4.99, 5.78, and 6.63 × 10−15 m2 s−1; Mo: 3.85, 5.31, and 6.55 × 10−15 m2 s−1). Consequently, an appropriate amount of Zr microalloying can facilitate elemental diffusion throughout the homogenization process. However, an excessive Zr addition will trigger severe elemental segregation during solidification, which has a detrimental impact on the hot workability of subsequent alloys. Finally, the synergistic effect is thoroughly discussed, and the optimal Zr content is determined.

Abstract Image

一种新型固溶强化镍基高温合金的凝固偏析和均匀化行为:Zr微合金化的关键影响
在本文中,锆(Zr)微合金化在调节一种新开发的固溶强化镍基高温合金的凝固、偏析和均匀化动力学中起着至关重要的作用。采用透射电镜、电子探针显微分析和带能量色散x射线能谱的扫描电镜对三种Zr含量(0.02、0.08和0.22 wt%)不同的合金变体进行了综合分析。结果表明:Zr的加入显著地扩大了凝固温度范围ΔT(23、26和36℃),加剧了Zr、Mo和Mn的枝晶间偏析;在1200℃的均质化过程中,析出在晶界处的富锆碳化物(0.036、0.131和0.249 wt%)逐渐溶解,并伴随着元素扩散系数的增加(Cr: 4.99、5.78和6.63 × 10−15 m2 s−1);Mo: 3.85、5.31和6.55 × 10−15 m2 (s−1)。因此,适量的Zr微合金化有利于元素在均匀化过程中的扩散。然而,过量的Zr添加会在凝固过程中引发严重的元素偏析,从而对后续合金的热加工性产生不利影响。最后,深入探讨了协同效应,确定了Zr的最佳含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信