Traces on the uniform tracial completion of Z $\mathcal {Z}$ -stable C ∗ ${\rm C}^*$ -algebras

IF 1.2 2区 数学 Q1 MATHEMATICS
Samuel Evington
{"title":"Traces on the uniform tracial completion of \n \n Z\n $\\mathcal {Z}$\n -stable \n \n \n C\n ∗\n \n ${\\rm C}^*$\n -algebras","authors":"Samuel Evington","doi":"10.1112/jlms.70207","DOIUrl":null,"url":null,"abstract":"<p>The uniform tracial completion of a <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-algebra <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> with compact trace space <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n <mo>≠</mo>\n <mi>∅</mi>\n </mrow>\n <annotation>$T(A) \\ne \\emptyset$</annotation>\n </semantics></math> is obtained by completing the unit ball with respect to the uniform 2-seminorm <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mi>a</mi>\n <mo>∥</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>T</mi>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mo>sup</mo>\n <mrow>\n <mi>τ</mi>\n <mo>∈</mo>\n <mi>T</mi>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mi>τ</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>a</mi>\n <mo>∗</mo>\n </msup>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\Vert a\\Vert _{2,T(A)}=\\sup _{\\tau \\in T(A)} \\tau (a^*a)^{1/2}$</annotation>\n </semantics></math>. The <i>trace problem</i> asks whether every trace on the uniform tracial completion is the <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>·</mo>\n <mo>∥</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>T</mi>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$\\Vert \\cdot \\Vert _{2,T(A)}$</annotation>\n </semantics></math>-continuous extension of a trace on <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>. We answer this question positively in the case of <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-algebras that tensorially absorb the Jiang–Su algebra, such as those studied in the Elliott classification programme.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70207","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70207","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The uniform tracial completion of a C ${\rm C}^*$ -algebra A $A$ with compact trace space T ( A ) $T(A) \ne \emptyset$ is obtained by completing the unit ball with respect to the uniform 2-seminorm a 2 , T ( A ) = sup τ T ( A ) τ ( a a ) 1 / 2 $\Vert a\Vert _{2,T(A)}=\sup _{\tau \in T(A)} \tau (a^*a)^{1/2}$ . The trace problem asks whether every trace on the uniform tracial completion is the · 2 , T ( A ) $\Vert \cdot \Vert _{2,T(A)}$ -continuous extension of a trace on A $A$ . We answer this question positively in the case of C ${\rm C}^*$ -algebras that tensorially absorb the Jiang–Su algebra, such as those studied in the Elliott classification programme.

Z $\mathcal {Z}$ -stable C *$ {\rm C}^*$ -代数的一致迹补上的迹
紧迹空间T(a)≠∅$T(a) \ne的C∗${\rm C}^*$ -代数a $ a $的一致迹补全\emptyset$通过对均匀2-半模∥a∥2补全单位球得到,T (A) = sup τ∈T (A) τ(a * a) 1 / 2 $\Vert a\Vert _{2,T(a)}=\sup _{\tau \in T(a)} \tau(^ *) ^ {1/2 }$ .轨迹问题是指均匀轨迹补全上的每条轨迹是否为∥·∥2;T(A) $\Vert \cdot \Vert _{2,T(A)}$ - A$ A$上轨迹的连续扩展。在C *$ {\rm C}^*$ -代数的情况下,我们肯定地回答了这个问题,这些代数张性地吸收了Jiang-Su代数,例如Elliott分类程序中研究的代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信