Haoyu Zhou, Zhen Zhang, Zhan Liu, Guodong Sa, Mingjing Jiang, Zhongyang Zou, Yingliang Shi, Liwu Zheng, Xuewen Yang, Guoliang Sa
{"title":"Single-Cell Analysis Reveals Fibroblast-Derived Migrasomes as CXCL12 Carriers Promoting Skin Wound Repair","authors":"Haoyu Zhou, Zhen Zhang, Zhan Liu, Guodong Sa, Mingjing Jiang, Zhongyang Zou, Yingliang Shi, Liwu Zheng, Xuewen Yang, Guoliang Sa","doi":"10.1002/jev2.70112","DOIUrl":null,"url":null,"abstract":"<p>Migrasomes are newly discovered organelles with demonstrated functions in organ morphogenesis and angiogenesis. However, the effect of migrasomes in tissue repair remains unreported. Our super-resolution confocal microscopy and focused ion beam scanning electron microscopy results confirmed that migrasomes were directly connected with retraction fibres and could release their contents into the surroundings in human and rat skins and oral mucosae. Multiplex immunofluorescence staining results revealed that these retraction fibres and migrasomes originated from fibroblasts. Live-cell imaging demonstrated that human oral mucosal fibroblast-derived migrasomes could be taken up by both fibroblasts and HaCaT cells. In addition, the injection of purified fibroblast-derived migrasomes into the edges of rat skin wounds significantly accelerated wound healing. Single-cell sequencing results suggested that the clusters of keratinocytes, fibroblasts, and endothelial cells play key roles in the wound-healing process. Moreover, the expression of <i>Vegfa</i>, <i>Il-6</i>, and <i>Col1a1</i> in the fibroblast subcluster was significantly upregulated. Furthermore, these purified migrasomes increased the protein levels of VEGFA, IL-6, and COL1A1 in cultured fibroblasts in vitro. Mechanistically, migrasomes may facilitate wound healing by delivering CXCL12. Thus, our research revealed that fibroblast-derived migrasomes are potential therapeutic vesicles for skin wound-healing repair.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 6","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70112","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70112","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Migrasomes are newly discovered organelles with demonstrated functions in organ morphogenesis and angiogenesis. However, the effect of migrasomes in tissue repair remains unreported. Our super-resolution confocal microscopy and focused ion beam scanning electron microscopy results confirmed that migrasomes were directly connected with retraction fibres and could release their contents into the surroundings in human and rat skins and oral mucosae. Multiplex immunofluorescence staining results revealed that these retraction fibres and migrasomes originated from fibroblasts. Live-cell imaging demonstrated that human oral mucosal fibroblast-derived migrasomes could be taken up by both fibroblasts and HaCaT cells. In addition, the injection of purified fibroblast-derived migrasomes into the edges of rat skin wounds significantly accelerated wound healing. Single-cell sequencing results suggested that the clusters of keratinocytes, fibroblasts, and endothelial cells play key roles in the wound-healing process. Moreover, the expression of Vegfa, Il-6, and Col1a1 in the fibroblast subcluster was significantly upregulated. Furthermore, these purified migrasomes increased the protein levels of VEGFA, IL-6, and COL1A1 in cultured fibroblasts in vitro. Mechanistically, migrasomes may facilitate wound healing by delivering CXCL12. Thus, our research revealed that fibroblast-derived migrasomes are potential therapeutic vesicles for skin wound-healing repair.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.