Mathew Rees, Adeline Fayolle, John L. Godlee, Anais P. Gorel, David J. Harris, Kyle G. Dexter
{"title":"Patterns and Drivers of Phylogenetic Beta Diversity in the Forests and Savannas of Africa","authors":"Mathew Rees, Adeline Fayolle, John L. Godlee, Anais P. Gorel, David J. Harris, Kyle G. Dexter","doi":"10.1111/jbi.15140","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Studying beta diversity, or the variation in species composition among communities, can give insights into plant community assembly over space and time. If different biomes show contrasting large-scale beta-diversity patterns, this can indicate divergent evolutionary histories or ecological processes that then drive species turnover among communities. Here, we examine phylogenetic beta-diversity patterns across Africa in forest and savanna assemblages, the two most widespread tropical biomes on the continent. We hypothesise that savannas will show lower phylogenetic beta diversity due to their younger evolutionary history.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Tropical Africa.</p>\n </section>\n \n <section>\n \n <h3> Taxon</h3>\n \n <p>Woody angiosperms.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We gathered 301,159 occurrences of woody angiosperms representing 1883 forest species and 1302 savanna species. We compared levels of phylogenetic beta diversity between forest and savanna assemblages, analysed spatial patterns of phylogenetic beta diversity using 1° grid cells and modelled their relationship with climate, disturbance and geographical distance.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found that savannas show greater relative regional phylogenetic beta diversity, whereas forest assemblages show greater relative local phylogenetic beta diversity. The spatial distribution of beta diversity showed strong East–West patterns for both forests and savannas, aligned with a major floristic discontinuity associated with the Albertine rift. Our results also highlighted West Africa as showing a high amount of compositional change for both biomes, arranged along an aridity gradient. Variance partitioning showed that predictors linked to precipitation were the main drivers of compositional change for both forests and savannas, but the importance of individual predictors was different in each biome.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Contrary to our expectations, our results indicate that savannas may have a deeper and richer evolutionary history than suggested by previous studies and that individual regions of both forest and savanna have high conservation value. Finally, our results demonstrate that environmental filtering is the dominant force influencing the assembly of these two important biomes at a continental spatial scale.</p>\n </section>\n </div>","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":"52 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbi.15140","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jbi.15140","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
Studying beta diversity, or the variation in species composition among communities, can give insights into plant community assembly over space and time. If different biomes show contrasting large-scale beta-diversity patterns, this can indicate divergent evolutionary histories or ecological processes that then drive species turnover among communities. Here, we examine phylogenetic beta-diversity patterns across Africa in forest and savanna assemblages, the two most widespread tropical biomes on the continent. We hypothesise that savannas will show lower phylogenetic beta diversity due to their younger evolutionary history.
Location
Tropical Africa.
Taxon
Woody angiosperms.
Methods
We gathered 301,159 occurrences of woody angiosperms representing 1883 forest species and 1302 savanna species. We compared levels of phylogenetic beta diversity between forest and savanna assemblages, analysed spatial patterns of phylogenetic beta diversity using 1° grid cells and modelled their relationship with climate, disturbance and geographical distance.
Results
We found that savannas show greater relative regional phylogenetic beta diversity, whereas forest assemblages show greater relative local phylogenetic beta diversity. The spatial distribution of beta diversity showed strong East–West patterns for both forests and savannas, aligned with a major floristic discontinuity associated with the Albertine rift. Our results also highlighted West Africa as showing a high amount of compositional change for both biomes, arranged along an aridity gradient. Variance partitioning showed that predictors linked to precipitation were the main drivers of compositional change for both forests and savannas, but the importance of individual predictors was different in each biome.
Main Conclusions
Contrary to our expectations, our results indicate that savannas may have a deeper and richer evolutionary history than suggested by previous studies and that individual regions of both forest and savanna have high conservation value. Finally, our results demonstrate that environmental filtering is the dominant force influencing the assembly of these two important biomes at a continental spatial scale.
期刊介绍:
Papers dealing with all aspects of spatial, ecological and historical biogeography are considered for publication in Journal of Biogeography. The mission of the journal is to contribute to the growth and societal relevance of the discipline of biogeography through its role in the dissemination of biogeographical research.