Analog In-Memory Computing for the Synthetic Aperture Radar Polar Format Algorithm

David K. Richardson;T. Patrick Xiao;R. Derek West;Christopher H. Bennett;Sapan Agarwal
{"title":"Analog In-Memory Computing for the Synthetic Aperture Radar Polar Format Algorithm","authors":"David K. Richardson;T. Patrick Xiao;R. Derek West;Christopher H. Bennett;Sapan Agarwal","doi":"10.1109/TRS.2025.3570977","DOIUrl":null,"url":null,"abstract":"As the utility of synthetic aperture radar (SAR) systems increases in autonomous vehicles, satellites, and other power- and space-constrained edge applications, there is a growing need for processors that can form SAR images at low power. In recent years, analog in-memory compute (AIMC) has shown immense promise for accelerating neural networks and other matrix-vector multiplication (MVM) heavy workloads at the edge. In this work, we examine how the polar format algorithm (PFA), a popular SAR image formation algorithm, can be mapped to these AIMC systems. The PFA maps readily onto analog MVMs because it primarily consists of two linear operations: interpolation of frequency-domain data to a Cartesian grid, followed by a 2-D Fourier transform. This work presents two approaches to map the interpolation operation onto MVMs in analog hardware: a chirp transform and a modified form of sinc interpolation. These mappings introduce algorithmic errors, and their effect on the quality of SAR image formation is examined, both quantitatively and qualitatively. In addition, the impact of errors introduced by the analog hardware is explored to determine which approach is optimal under varying assumptions about the underlying analog memory devices and circuits.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"811-817"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11006296/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the utility of synthetic aperture radar (SAR) systems increases in autonomous vehicles, satellites, and other power- and space-constrained edge applications, there is a growing need for processors that can form SAR images at low power. In recent years, analog in-memory compute (AIMC) has shown immense promise for accelerating neural networks and other matrix-vector multiplication (MVM) heavy workloads at the edge. In this work, we examine how the polar format algorithm (PFA), a popular SAR image formation algorithm, can be mapped to these AIMC systems. The PFA maps readily onto analog MVMs because it primarily consists of two linear operations: interpolation of frequency-domain data to a Cartesian grid, followed by a 2-D Fourier transform. This work presents two approaches to map the interpolation operation onto MVMs in analog hardware: a chirp transform and a modified form of sinc interpolation. These mappings introduce algorithmic errors, and their effect on the quality of SAR image formation is examined, both quantitatively and qualitatively. In addition, the impact of errors introduced by the analog hardware is explored to determine which approach is optimal under varying assumptions about the underlying analog memory devices and circuits.
合成孔径雷达极坐标格式算法的内存模拟计算
随着合成孔径雷达(SAR)系统在自动驾驶汽车、卫星和其他功率和空间受限的边缘应用中的应用日益增加,对能够以低功耗形成SAR图像的处理器的需求日益增长。近年来,模拟内存计算(AIMC)在加速神经网络和其他边缘矩阵向量乘法(MVM)繁重工作负载方面显示出巨大的前景。在这项工作中,我们研究了如何将极格式算法(PFA),一种流行的SAR图像形成算法,映射到这些AIMC系统。PFA很容易映射到模拟mvm上,因为它主要由两个线性操作组成:将频域数据插值到笛卡尔网格,然后进行二维傅里叶变换。这项工作提出了两种将插值操作映射到模拟硬件中的mvm的方法:啁啾变换和修改形式的sinc插值。这些映射引入了算法误差,并对其对SAR图像形成质量的影响进行了定量和定性的研究。此外,还探讨了模拟硬件引入的误差的影响,以确定在关于底层模拟存储设备和电路的不同假设下哪种方法是最佳的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信