{"title":"Experimental Open-Source-Based Evaluation Platform for Highly Spectral-Efficient 5G With Simplified UTW-OFDM","authors":"Kazuki Takeda;Keiichi Mizutani;Hiroshi Harada","doi":"10.1109/OJVT.2025.3569518","DOIUrl":null,"url":null,"abstract":"Fifth-generation mobile communication (5G) systems are increasingly being deployed in both commercial and private wireless networks to meet the growing demand for high-speed, reliable connectivity. While 5G systems adopt orthogonal frequency-division multiplexing (OFDM) for its high data rates and spectral efficiency, OFDM is known to generate large out-of-band emissions (OOBE), which must be suppressed to maximize spectrum usage. In this study, to tackle this issue, we propose and develop an experimental 5G full-stack evaluation platform that implements a waveform-shaping function for OFDM signals. The platform utilizes software-defined radio and open-source 5G software compliant with third-generation Partnership Project standards. We implement a simplified universal time-domain windowed OFDM as an application of the waveform shaping. This is a waveform shaping technique that can strongly suppress OOBE by applying a long time-domain window to the conventional cyclic prefix OFDM symbol. The transmission performance of the proposed platform was evaluated using a complete 5G system, which includes a 5G base station, user equipment, and a 5G core network. The effectiveness of the proposed platform is verified through link-level computer simulations. The results demonstrate that the block error rate characteristics exhibited a signal-to-noise power ratio difference of less than 1 dB between the platform and simulations and achieved an OOBE suppression of up to 24 dB at a bandwidth of 40 MHz. Furthermore, connectivity with a commercial 5G device demonstrated the feasibility of achieving OOBE suppression of 22 dB at a bandwidth of 100 MHz with a tolerable decrease of 18% in user throughput.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"1426-1437"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11002599","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11002599/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Fifth-generation mobile communication (5G) systems are increasingly being deployed in both commercial and private wireless networks to meet the growing demand for high-speed, reliable connectivity. While 5G systems adopt orthogonal frequency-division multiplexing (OFDM) for its high data rates and spectral efficiency, OFDM is known to generate large out-of-band emissions (OOBE), which must be suppressed to maximize spectrum usage. In this study, to tackle this issue, we propose and develop an experimental 5G full-stack evaluation platform that implements a waveform-shaping function for OFDM signals. The platform utilizes software-defined radio and open-source 5G software compliant with third-generation Partnership Project standards. We implement a simplified universal time-domain windowed OFDM as an application of the waveform shaping. This is a waveform shaping technique that can strongly suppress OOBE by applying a long time-domain window to the conventional cyclic prefix OFDM symbol. The transmission performance of the proposed platform was evaluated using a complete 5G system, which includes a 5G base station, user equipment, and a 5G core network. The effectiveness of the proposed platform is verified through link-level computer simulations. The results demonstrate that the block error rate characteristics exhibited a signal-to-noise power ratio difference of less than 1 dB between the platform and simulations and achieved an OOBE suppression of up to 24 dB at a bandwidth of 40 MHz. Furthermore, connectivity with a commercial 5G device demonstrated the feasibility of achieving OOBE suppression of 22 dB at a bandwidth of 100 MHz with a tolerable decrease of 18% in user throughput.