Network Resource Optimization for ML-Based UAV Condition Monitoring With Vibration Analysis

Alexandre Gemayel;Dimitrios Michael Manias;Abdallah Shami
{"title":"Network Resource Optimization for ML-Based UAV Condition Monitoring With Vibration Analysis","authors":"Alexandre Gemayel;Dimitrios Michael Manias;Abdallah Shami","doi":"10.1109/LNET.2025.3545286","DOIUrl":null,"url":null,"abstract":"As smart cities begin to materialize, the role of Unmanned Aerial Vehicles (UAVs) and their reliability becomes increasingly important. One aspect of reliability relates to Condition Monitoring (CM), where Machine Learning (ML) models are leveraged to identify abnormal and adverse conditions. Given the resource-constrained nature of next-generation edge networks, the utilization of precious network resources must be minimized. This letter explores the optimization of network resources for ML-based UAV CM frameworks. The developed framework uses experimental data and varies the feature extraction aggregation interval to optimize ML model selection. Additionally, by leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 2","pages":"108-112"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10902050/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As smart cities begin to materialize, the role of Unmanned Aerial Vehicles (UAVs) and their reliability becomes increasingly important. One aspect of reliability relates to Condition Monitoring (CM), where Machine Learning (ML) models are leveraged to identify abnormal and adverse conditions. Given the resource-constrained nature of next-generation edge networks, the utilization of precious network resources must be minimized. This letter explores the optimization of network resources for ML-based UAV CM frameworks. The developed framework uses experimental data and varies the feature extraction aggregation interval to optimize ML model selection. Additionally, by leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.
基于机器学习的无人机状态监测网络资源优化与振动分析
随着智慧城市的开始实现,无人机(uav)的作用及其可靠性变得越来越重要。可靠性的一个方面与状态监测(CM)有关,其中利用机器学习(ML)模型来识别异常和不利条件。考虑到下一代边缘网络的资源约束特性,必须最大限度地减少宝贵网络资源的利用。本文探讨了基于ml的无人机CM框架的网络资源优化。开发的框架使用实验数据,并改变特征提取聚合间隔来优化机器学习模型选择。此外,通过利用降维技术,网络资源消耗减少了99.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信