Toward Better QoT Estimation: An ML Architecture With Link-Level Embedding Layers

Piotr Lechowicz;Carlos Natalino;Farhad Arpanaei;Stefan Melin;Renzo Diaz;Anders Lindgren;David Larrabeiti;Paolo Monti
{"title":"Toward Better QoT Estimation: An ML Architecture With Link-Level Embedding Layers","authors":"Piotr Lechowicz;Carlos Natalino;Farhad Arpanaei;Stefan Melin;Renzo Diaz;Anders Lindgren;David Larrabeiti;Paolo Monti","doi":"10.1109/LNET.2025.3561336","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) is emerging as a promising tool for estimating the Quality of Transmission (QoT) in optical networks, especially for unestablished lightpaths where traditional methods are limited. However, inaccuracies in ML-based QoT predictions—typically expressed in terms of generalized signal-to-noise ratio (GSNR)—can significantly affect network operation. Overestimation may lead to retransmissions due to overly aggressive modulation format choices, while underestimation results in underutilized spectral resources. To address this, we propose a novel ML architecture that incorporates an embedding layer for link-level features alongside path- and service-level inputs. Using data generated from an accurate analytical model, we show that our approach reduces prediction error by up to 34% compared to standard architectures. Simulated deployment scenarios further demonstrate operational benefits, with a 15.9% decrease in incorrect and a 34.8% reduction in overly conservative modulation format selections.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 2","pages":"122-125"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10966418","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10966418/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) is emerging as a promising tool for estimating the Quality of Transmission (QoT) in optical networks, especially for unestablished lightpaths where traditional methods are limited. However, inaccuracies in ML-based QoT predictions—typically expressed in terms of generalized signal-to-noise ratio (GSNR)—can significantly affect network operation. Overestimation may lead to retransmissions due to overly aggressive modulation format choices, while underestimation results in underutilized spectral resources. To address this, we propose a novel ML architecture that incorporates an embedding layer for link-level features alongside path- and service-level inputs. Using data generated from an accurate analytical model, we show that our approach reduces prediction error by up to 34% compared to standard architectures. Simulated deployment scenarios further demonstrate operational benefits, with a 15.9% decrease in incorrect and a 34.8% reduction in overly conservative modulation format selections.
迈向更好的QoT估计:一个具有链接级嵌入层的机器学习体系结构
机器学习(ML)正在成为估计光网络中传输质量(QoT)的有前途的工具,特别是对于传统方法有限的未建立的光路。然而,基于ml的QoT预测的不准确性——通常用广义信噪比(GSNR)表示——会严重影响网络运行。由于过度积极的调制格式选择,估计过高可能导致重传,而估计过低则导致频谱资源利用不足。为了解决这个问题,我们提出了一种新的机器学习架构,该架构结合了一个嵌入层,用于路径和服务级输入的链接级功能。使用精确分析模型生成的数据,我们表明,与标准架构相比,我们的方法将预测误差降低了34%。模拟部署场景进一步证明了操作上的优势,错误调制格式选择减少了15.9%,过度保守调制格式选择减少了34.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信