From Pixels to Titles: Video Game Identification by Screenshots Using Convolutional Neural Networks

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fabricio Breve
{"title":"From Pixels to Titles: Video Game Identification by Screenshots Using Convolutional Neural Networks","authors":"Fabricio Breve","doi":"10.1109/TG.2025.3528187","DOIUrl":null,"url":null,"abstract":"In this article, we investigate video game identification through single screenshots, utilizing ten convolutional neural network (CNN) architectures (VGG16, ResNet50, ResNet152, MobileNet, DenseNet169, DenseNet201, EfficientNetB0, EfficientNetB2, EfficientNetB3, and EfficientNetV2S) and three transformers architectures (ViT-B16, ViT-L32, and SwinT) across 22 home console systems, spanning from Atari 2600 to PlayStation 5, totalling 8796 games and 170 881 screenshots. Except for VGG16, all CNNs outperformed the transformers in this task. Using ImageNet pretrained weights as initial weights, EfficientNetV2S achieves the highest average accuracy (77.44%) and the highest accuracy in 16 of the 22 systems. DenseNet201 is the best in four systems and EfficientNetB3 is the best in the remaining two systems. Employing alternative initial weights fine-tuned in an arcade screenshots dataset boosts accuracy for EfficientNet architectures, with the EfficientNetV2S reaching a peak accuracy of 77.63% and demonstrating reduced convergence epochs from 26.9 to 24.5 on average. Overall, the combination of optimal architecture and weights attains 78.79% accuracy, primarily led by EfficientNetV2S in 15 systems. These findings underscore the efficacy of CNNs in video game identification through screenshots.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"17 2","pages":"536-544"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10836783/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate video game identification through single screenshots, utilizing ten convolutional neural network (CNN) architectures (VGG16, ResNet50, ResNet152, MobileNet, DenseNet169, DenseNet201, EfficientNetB0, EfficientNetB2, EfficientNetB3, and EfficientNetV2S) and three transformers architectures (ViT-B16, ViT-L32, and SwinT) across 22 home console systems, spanning from Atari 2600 to PlayStation 5, totalling 8796 games and 170 881 screenshots. Except for VGG16, all CNNs outperformed the transformers in this task. Using ImageNet pretrained weights as initial weights, EfficientNetV2S achieves the highest average accuracy (77.44%) and the highest accuracy in 16 of the 22 systems. DenseNet201 is the best in four systems and EfficientNetB3 is the best in the remaining two systems. Employing alternative initial weights fine-tuned in an arcade screenshots dataset boosts accuracy for EfficientNet architectures, with the EfficientNetV2S reaching a peak accuracy of 77.63% and demonstrating reduced convergence epochs from 26.9 to 24.5 on average. Overall, the combination of optimal architecture and weights attains 78.79% accuracy, primarily led by EfficientNetV2S in 15 systems. These findings underscore the efficacy of CNNs in video game identification through screenshots.
从像素到标题:使用卷积神经网络通过截图识别电子游戏
在本文中,我们通过单个截图研究视频游戏识别,利用10个卷积神经网络(CNN)架构(VGG16, ResNet50, ResNet152, MobileNet, DenseNet169, DenseNet201, EfficientNetB0, EfficientNetB2, EfficientNetB3和EfficientNetV2S)和3个变压器架构(viti - b16, viti - l32和swt),横跨22个家用游戏机系统,从雅达利2600到PlayStation 5,共8796个游戏和170 881个截图。除VGG16外,所有cnn在该任务中的表现都优于变压器。使用ImageNet预训练的权值作为初始权值,在22个系统中,有效率netv2s的平均准确率最高(77.44%),在16个系统中准确率最高。DenseNet201在4个系统中表现最好,EfficientNetB3在其余2个系统中表现最好。在街机屏幕截图数据集中采用微调的替代初始权重可以提高效率网架构的准确性,效率网v2s达到77.63%的峰值精度,并将收敛时间从26.9减少到24.5。总体而言,最优架构和权重的组合达到78.79%的准确率,主要由15个系统中的EfficientNetV2S领先。这些发现强调了cnn在通过截图识别电子游戏中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信