{"title":"From Pixels to Titles: Video Game Identification by Screenshots Using Convolutional Neural Networks","authors":"Fabricio Breve","doi":"10.1109/TG.2025.3528187","DOIUrl":null,"url":null,"abstract":"In this article, we investigate video game identification through single screenshots, utilizing ten convolutional neural network (CNN) architectures (VGG16, ResNet50, ResNet152, MobileNet, DenseNet169, DenseNet201, EfficientNetB0, EfficientNetB2, EfficientNetB3, and EfficientNetV2S) and three transformers architectures (ViT-B16, ViT-L32, and SwinT) across 22 home console systems, spanning from Atari 2600 to PlayStation 5, totalling 8796 games and 170 881 screenshots. Except for VGG16, all CNNs outperformed the transformers in this task. Using ImageNet pretrained weights as initial weights, EfficientNetV2S achieves the highest average accuracy (77.44%) and the highest accuracy in 16 of the 22 systems. DenseNet201 is the best in four systems and EfficientNetB3 is the best in the remaining two systems. Employing alternative initial weights fine-tuned in an arcade screenshots dataset boosts accuracy for EfficientNet architectures, with the EfficientNetV2S reaching a peak accuracy of 77.63% and demonstrating reduced convergence epochs from 26.9 to 24.5 on average. Overall, the combination of optimal architecture and weights attains 78.79% accuracy, primarily led by EfficientNetV2S in 15 systems. These findings underscore the efficacy of CNNs in video game identification through screenshots.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"17 2","pages":"536-544"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10836783/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we investigate video game identification through single screenshots, utilizing ten convolutional neural network (CNN) architectures (VGG16, ResNet50, ResNet152, MobileNet, DenseNet169, DenseNet201, EfficientNetB0, EfficientNetB2, EfficientNetB3, and EfficientNetV2S) and three transformers architectures (ViT-B16, ViT-L32, and SwinT) across 22 home console systems, spanning from Atari 2600 to PlayStation 5, totalling 8796 games and 170 881 screenshots. Except for VGG16, all CNNs outperformed the transformers in this task. Using ImageNet pretrained weights as initial weights, EfficientNetV2S achieves the highest average accuracy (77.44%) and the highest accuracy in 16 of the 22 systems. DenseNet201 is the best in four systems and EfficientNetB3 is the best in the remaining two systems. Employing alternative initial weights fine-tuned in an arcade screenshots dataset boosts accuracy for EfficientNet architectures, with the EfficientNetV2S reaching a peak accuracy of 77.63% and demonstrating reduced convergence epochs from 26.9 to 24.5 on average. Overall, the combination of optimal architecture and weights attains 78.79% accuracy, primarily led by EfficientNetV2S in 15 systems. These findings underscore the efficacy of CNNs in video game identification through screenshots.