A Genetic Algorithm for Solving Sudoku Based on Multiarmed Bandit Selection

IF 2.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jon-Lark Kim;Eunjee Eor
{"title":"A Genetic Algorithm for Solving Sudoku Based on Multiarmed Bandit Selection","authors":"Jon-Lark Kim;Eunjee Eor","doi":"10.1109/TG.2024.3487861","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a genetic algorithm-based upper confidence bound (GA-UCB), an innovative hybrid genetic algorithm integrating multiarmed bandit. It effectively addresses the challenges of solving large and intricate <italic>Sudoku</i> puzzles, thus overcoming the constraints of traditional genetic algorithms. In GA-UCB, reinforcement learning is applied to simulate parent selection and crossover. By learning the optimal parent selection within a given population, the population evolves. Based on this technology, GA-UCB demonstrates improved results in solving complex <italic>Sudoku</i> puzzles. GA-UCB is compared with several state-of-the-art algorithms on <italic>Sudoku</i> puzzles of different difficulty levels and shows a 55% improvement in convergence speed compared to previous research results, particularly in the most challenging instance among the six <italic>Sudoku</i> puzzle instances tested.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"17 2","pages":"429-441"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737894/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce a genetic algorithm-based upper confidence bound (GA-UCB), an innovative hybrid genetic algorithm integrating multiarmed bandit. It effectively addresses the challenges of solving large and intricate Sudoku puzzles, thus overcoming the constraints of traditional genetic algorithms. In GA-UCB, reinforcement learning is applied to simulate parent selection and crossover. By learning the optimal parent selection within a given population, the population evolves. Based on this technology, GA-UCB demonstrates improved results in solving complex Sudoku puzzles. GA-UCB is compared with several state-of-the-art algorithms on Sudoku puzzles of different difficulty levels and shows a 55% improvement in convergence speed compared to previous research results, particularly in the most challenging instance among the six Sudoku puzzle instances tested.
基于多臂强盗选择的数独遗传算法
本文介绍了一种基于遗传算法的上置信度界(GA-UCB)算法,这是一种集成多臂强盗的新型混合遗传算法。它有效地解决了解决大型和复杂的数独难题的挑战,从而克服了传统遗传算法的限制。在GA-UCB中,采用强化学习模拟亲本选择和交叉。通过在给定种群中学习最优的亲本选择,种群得以进化。基于该技术,GA-UCB在解决复杂数独难题方面表现出了改进的结果。GA-UCB在不同难度的数独问题上与几种最先进的算法进行了比较,结果表明,与之前的研究结果相比,GA-UCB的收敛速度提高了55%,特别是在测试的六个数独问题实例中最具挑战性的实例中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信