A Novel Framework of Horizontal-Vertical Hybrid Federated Learning for EdgeIoT

Kai Li;Yilei Liang;Xin Yuan;Wei Ni;Jon Crowcroft;Chau Yuen;Ozgur B. Akan
{"title":"A Novel Framework of Horizontal-Vertical Hybrid Federated Learning for EdgeIoT","authors":"Kai Li;Yilei Liang;Xin Yuan;Wei Ni;Jon Crowcroft;Chau Yuen;Ozgur B. Akan","doi":"10.1109/LNET.2025.3540268","DOIUrl":null,"url":null,"abstract":"This letter puts forth a new hybrid horizontal-vertical federated learning (HoVeFL) for mobile edge computing-enabled Internet of Things (EdgeIoT). In this framework, certain EdgeIoT devices train local models using the same data samples but analyze disparate data features, while the others focus on the same features using non-independent and identically distributed (non-IID) data samples. Thus, even though the data features are consistent, the data samples vary across devices. The proposed HoVeFL formulates the training of local and global models to minimize the global loss function. Performance evaluations on CIFAR-10 and SVHN datasets reveal that the testing loss of HoVeFL with 12 horizontal FL devices and six vertical FL devices is 5.5% and 25.2% higher, respectively, compared to a setup with six horizontal FL devices and 12 vertical FL devices.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 2","pages":"83-87"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10879046/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This letter puts forth a new hybrid horizontal-vertical federated learning (HoVeFL) for mobile edge computing-enabled Internet of Things (EdgeIoT). In this framework, certain EdgeIoT devices train local models using the same data samples but analyze disparate data features, while the others focus on the same features using non-independent and identically distributed (non-IID) data samples. Thus, even though the data features are consistent, the data samples vary across devices. The proposed HoVeFL formulates the training of local and global models to minimize the global loss function. Performance evaluations on CIFAR-10 and SVHN datasets reveal that the testing loss of HoVeFL with 12 horizontal FL devices and six vertical FL devices is 5.5% and 25.2% higher, respectively, compared to a setup with six horizontal FL devices and 12 vertical FL devices.
一种面向边缘物联网的水平-垂直混合联邦学习新框架
这封信提出了一种新的混合水平-垂直联合学习(HoVeFL),用于支持移动边缘计算的物联网(EdgeIoT)。在这个框架中,某些EdgeIoT设备使用相同的数据样本训练本地模型,但分析不同的数据特征,而其他设备则使用非独立和同分布(non-IID)数据样本关注相同的特征。因此,即使数据特征是一致的,数据样本也会因设备而异。提出的HoVeFL制定了局部和全局模型的训练,以最小化全局损失函数。在CIFAR-10和SVHN数据集上的性能评估表明,与具有6个水平FL装置和12个垂直FL装置的设置相比,具有12个水平FL装置和6个垂直FL装置的HoVeFL测试损耗分别高出5.5%和25.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信