{"title":"Symmetry of finite energy solutions to critical p-Laplacian systems in RN","authors":"Min Zhou, Zexin Zhang","doi":"10.1016/j.jmaa.2025.129812","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with the symmetry of finite energy solutions <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> to the following critical <em>p</em>-Laplacian system:<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>=</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>v</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>v</mi><mo>></mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>N</mi><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>m</mi><mo>,</mo><mi>q</mi><mo>></mo><mi>max</mi><mo></mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mo>,</mo><mspace></mspace><mi>r</mi><mo>,</mo><mi>s</mi><mo>≥</mo><mn>0</mn></math></span> satisfy <span><math><mi>m</mi><mo>−</mo><mi>s</mi><mo>≥</mo><mi>q</mi><mo>−</mo><mi>r</mi><mo>></mo><mo>−</mo><mi>p</mi><mo>+</mo><mn>1</mn></math></span> and <span><math><mi>m</mi><mo>+</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>=</mo><mi>q</mi><mo>+</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>:</mo><mo>=</mo><mfrac><mrow><mi>p</mi><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span>. Using decay estimates of the solutions at infinity obtained in <span><span>[34, Theorem 1.3]</span></span>, we apply the moving planes method to prove that <em>u</em> and <em>v</em> are both radial and radially decreasing about some point <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129812"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005931","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we are concerned with the symmetry of finite energy solutions to the following critical p-Laplacian system: where , satisfy and . Using decay estimates of the solutions at infinity obtained in [34, Theorem 1.3], we apply the moving planes method to prove that u and v are both radial and radially decreasing about some point .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.