All solutions of the Yang-Baxter-like matrix equation AXA = XAX with A satisfying A4 = A

IF 1.2 3区 数学 Q1 MATHEMATICS
Duanmei Zhou , Jie Liao , Yudan Gan , Huilin Xu , Rong Zhang
{"title":"All solutions of the Yang-Baxter-like matrix equation AXA = XAX with A satisfying A4 = A","authors":"Duanmei Zhou ,&nbsp;Jie Liao ,&nbsp;Yudan Gan ,&nbsp;Huilin Xu ,&nbsp;Rong Zhang","doi":"10.1016/j.jmaa.2025.129785","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct some explicit solutions to the Yang-Baxter-like matrix equation <span><math><mi>A</mi><mi>X</mi><mi>A</mi><mo>=</mo><mi>X</mi><mi>A</mi><mi>X</mi></math></span> for matrices <em>A</em> satisfying <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>=</mo><mi>A</mi></math></span>, thereby extending previous results in this field. By analyzing the minimal polynomial of <em>A</em>, we classify the problem into 11 distinct cases. Our approach leverages the Jordan decomposition of <em>A</em> to simplify the original equation, reducing it to a system of matrix equations involving block-diagonal matrices with smaller blocks. We then systematically solve these reduced equations to obtain the general solution. Finally, we present three numerical examples to demonstrate the applicability and effectiveness of our theoretical results.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129785"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005669","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we construct some explicit solutions to the Yang-Baxter-like matrix equation AXA=XAX for matrices A satisfying A4=A, thereby extending previous results in this field. By analyzing the minimal polynomial of A, we classify the problem into 11 distinct cases. Our approach leverages the Jordan decomposition of A to simplify the original equation, reducing it to a system of matrix equations involving block-diagonal matrices with smaller blocks. We then systematically solve these reduced equations to obtain the general solution. Finally, we present three numerical examples to demonstrate the applicability and effectiveness of our theoretical results.
类杨-巴克斯特矩阵方程AXA = XAX的所有解,其中A满足A4 = A
对于满足A4=A的矩阵A,构造了类yang - baxter矩阵方程AXA=XAX的若干显式解,从而推广了这一领域的前人成果。通过分析A的最小多项式,我们将问题分为11种不同的情况。我们的方法利用A的约旦分解来简化原始方程,将其简化为包含较小块的块对角矩阵的矩阵方程系统。然后系统地求解这些化简方程,得到通解。最后,通过三个数值算例验证了理论结果的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信