Innovations in metamaterial and metasurface antenna design: The role of deep learning

IF 7.4
Muhammad Kamran Shereen , Xiaoguang Liu , Xiaohu Wu , Salah Ud Din , Ayesha Naseem , Shehryar Niazi , Muhammad Irfan Khattak
{"title":"Innovations in metamaterial and metasurface antenna design: The role of deep learning","authors":"Muhammad Kamran Shereen ,&nbsp;Xiaoguang Liu ,&nbsp;Xiaohu Wu ,&nbsp;Salah Ud Din ,&nbsp;Ayesha Naseem ,&nbsp;Shehryar Niazi ,&nbsp;Muhammad Irfan Khattak","doi":"10.1016/j.mtelec.2025.100162","DOIUrl":null,"url":null,"abstract":"<div><div>Metamaterials and metasurfaces have revolutionized antenna design by enabling unprecedented control over electromagnetic waves. This paper explores integrating deep learning (DL) techniques in designing and optimizing metamaterial and metasurface antennas, focusing on improvements in gain, bandwidth, and size reduction. The review considers modern methodologies, such as hybrid optimization techniques with DL combined with traditional methods such as genetic algorithms and evolutionary strategies. It also addresses the use of high-fidelity datasets generated from advanced simulations to train DL models for more efficient antenna design. The paper is structured into five main sections: an introduction to metamaterials and metasurfaces, a discussion on their electromagnetic behavior, a classification of different types, an overview of deep learning applications in antenna design, and a conclusion summarizing the current advances, challenges, and future directions. By emphasizing the potential of DL to streamline the design process and enhance antenna performance, this paper provides a valuable foundation for future research in electromagnetic metasurfaces.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"13 ","pages":"Article 100162"},"PeriodicalIF":7.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949425000282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metamaterials and metasurfaces have revolutionized antenna design by enabling unprecedented control over electromagnetic waves. This paper explores integrating deep learning (DL) techniques in designing and optimizing metamaterial and metasurface antennas, focusing on improvements in gain, bandwidth, and size reduction. The review considers modern methodologies, such as hybrid optimization techniques with DL combined with traditional methods such as genetic algorithms and evolutionary strategies. It also addresses the use of high-fidelity datasets generated from advanced simulations to train DL models for more efficient antenna design. The paper is structured into five main sections: an introduction to metamaterials and metasurfaces, a discussion on their electromagnetic behavior, a classification of different types, an overview of deep learning applications in antenna design, and a conclusion summarizing the current advances, challenges, and future directions. By emphasizing the potential of DL to streamline the design process and enhance antenna performance, this paper provides a valuable foundation for future research in electromagnetic metasurfaces.
超材料和超表面天线设计的创新:深度学习的作用
超材料和超表面通过实现对电磁波的前所未有的控制,彻底改变了天线设计。本文探讨了在设计和优化超材料和超表面天线中集成深度学习(DL)技术,重点关注增益、带宽和尺寸减小方面的改进。该综述考虑了现代方法,如混合优化技术与DL结合传统方法,如遗传算法和进化策略。它还解决了使用高级模拟生成的高保真数据集来训练DL模型以实现更有效的天线设计的问题。本文分为五个主要部分:超材料和超表面的介绍,对其电磁行为的讨论,不同类型的分类,深度学习在天线设计中的应用概述,总结当前的进展,挑战和未来的方向。通过强调DL在简化设计过程和提高天线性能方面的潜力,本文为电磁超表面的未来研究提供了有价值的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信