Byung-Chul R Kim , Sabine Kleinsteuber , Christopher E Lawson
{"title":"Carbon-efficient waste upcycling: combining syngas fermentation and chain elongation with synthetic consortia","authors":"Byung-Chul R Kim , Sabine Kleinsteuber , Christopher E Lawson","doi":"10.1016/j.copbio.2025.103321","DOIUrl":null,"url":null,"abstract":"<div><div>Syngas fermentation and chain elongation are key anaerobic biotechnologies for waste carbon upcycling. Their integration as a mixotrophic process enables simultaneous conversion of gaseous and wet waste substrates into medium-chain carboxylic acids and alcohols with high yields and no CO<sub>2</sub> emissions. However, in practice, open culture-based processes suffer from low product yields, poor electron selectivity, and a narrow product range. Here, we explore synthetic consortia as a platform to advance one-pot mixotrophic waste conversion to medium-chain oleochemicals. We propose strategies for building synthetic consortia through a top-down, bottom-up approach, leveraging automation and high-throughput microbiology to accelerate bioprocess development. These advances could improve yields, expand waste feedstocks, and produce new chemicals, accelerating carbon-efficient waste upcycling toward industrial adoption while driving the circular economy.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"94 ","pages":"Article 103321"},"PeriodicalIF":7.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166925000655","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Syngas fermentation and chain elongation are key anaerobic biotechnologies for waste carbon upcycling. Their integration as a mixotrophic process enables simultaneous conversion of gaseous and wet waste substrates into medium-chain carboxylic acids and alcohols with high yields and no CO2 emissions. However, in practice, open culture-based processes suffer from low product yields, poor electron selectivity, and a narrow product range. Here, we explore synthetic consortia as a platform to advance one-pot mixotrophic waste conversion to medium-chain oleochemicals. We propose strategies for building synthetic consortia through a top-down, bottom-up approach, leveraging automation and high-throughput microbiology to accelerate bioprocess development. These advances could improve yields, expand waste feedstocks, and produce new chemicals, accelerating carbon-efficient waste upcycling toward industrial adoption while driving the circular economy.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.