Mustafa Tahsin Yilmaz , Salman Badurayq , Kemal Polat , Ahmad H. Milyani , Abdulaziz S. Alkabaa , Osman Gul , Furkan Turker Saricaoglu
{"title":"Explainable AI-driven evaluation of plant protein rheology using tree-based and Gaussian process machine learning models","authors":"Mustafa Tahsin Yilmaz , Salman Badurayq , Kemal Polat , Ahmad H. Milyani , Abdulaziz S. Alkabaa , Osman Gul , Furkan Turker Saricaoglu","doi":"10.1016/j.asej.2025.103565","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we conducted a comparative analysis of the explainability of Decision Tree Regressor (DTR) and Gaussian Process Regressor (GPR) models in predicting the shear stress and viscosity of sesame protein isolate (SPI) systems, employing explainable machine learning (EML) techniques to elucidate complex, nonlinear relationships among processing parameters. SPI samples were processed across pressure levels ranging from 0 to 100 MPa and ion concentration (IC) values from 0 to 200 mM. DTR model accurately predicted shear stress (<em>R</em><sup>2</sup> = 0.999), while a GPR model achieved high performance for viscosity prediction (<em>R</em><sup>2</sup> = 0.9925). Formally, the modeling task is framed as learning a predicting mapping function <span><math><mrow><mi>f</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mi>p</mi></msup><mo>→</mo><mi>R</mi></mrow></math></span>, where <span><math><mrow><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mi>p</mi></msup></mrow></math></span> denotes the vector of predictors (pressure, IC, shear rate) and <span><math><mrow><mi>y</mi><mo>∈</mo><mi>R</mi></mrow></math></span> is the target variable (shear stress or viscosity), by minimizing a loss function such as mean squared error. Interpretation of model predictions using SHapley Additive exPlanations (SHAP), permutation importance, and partial dependence analysis revealed that pressure and IC are the most influential factors affecting shear stress and viscosity, with pressure inducing protein conformational changes that impact rheological properties. The shear rate exhibited a lesser direct impact within the systems examined. Partial Dependence Plots (PDPs) from the DTR model revealed strong, nearly linear positive relationships between pressure and shear stress, while the GPR model depicted more nuanced responses, highlighting the models’ differing sensitivities. Variance-Based Sensitivity Indices (VBSIs) further quantified these influences, with pressure and IC showing higher sensitivity scores in the DTR model compared to the GPR model. Permutation importance and SHAP interaction analyses corroborated these results, emphasizing the dominant role of pressure and IC, both independently and interactively, in determining shear stress. In contrast, viscosity predictions were influenced by more distributed and subtle interactions among all features. Employing explainable machine learning techniques enables a comprehensive understanding of feature relevance in complex, nonlinear rheological systems, facilitating the elucidation of viscosity development in sesame protein systems through rheological indices. This approach ensures no bias toward formulation composition and applied pressure, offering valuable insights for optimizing formulation and processing conditions in food applications to enhance the functional properties of SPI-based products.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 9","pages":"Article 103565"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925003065","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we conducted a comparative analysis of the explainability of Decision Tree Regressor (DTR) and Gaussian Process Regressor (GPR) models in predicting the shear stress and viscosity of sesame protein isolate (SPI) systems, employing explainable machine learning (EML) techniques to elucidate complex, nonlinear relationships among processing parameters. SPI samples were processed across pressure levels ranging from 0 to 100 MPa and ion concentration (IC) values from 0 to 200 mM. DTR model accurately predicted shear stress (R2 = 0.999), while a GPR model achieved high performance for viscosity prediction (R2 = 0.9925). Formally, the modeling task is framed as learning a predicting mapping function , where denotes the vector of predictors (pressure, IC, shear rate) and is the target variable (shear stress or viscosity), by minimizing a loss function such as mean squared error. Interpretation of model predictions using SHapley Additive exPlanations (SHAP), permutation importance, and partial dependence analysis revealed that pressure and IC are the most influential factors affecting shear stress and viscosity, with pressure inducing protein conformational changes that impact rheological properties. The shear rate exhibited a lesser direct impact within the systems examined. Partial Dependence Plots (PDPs) from the DTR model revealed strong, nearly linear positive relationships between pressure and shear stress, while the GPR model depicted more nuanced responses, highlighting the models’ differing sensitivities. Variance-Based Sensitivity Indices (VBSIs) further quantified these influences, with pressure and IC showing higher sensitivity scores in the DTR model compared to the GPR model. Permutation importance and SHAP interaction analyses corroborated these results, emphasizing the dominant role of pressure and IC, both independently and interactively, in determining shear stress. In contrast, viscosity predictions were influenced by more distributed and subtle interactions among all features. Employing explainable machine learning techniques enables a comprehensive understanding of feature relevance in complex, nonlinear rheological systems, facilitating the elucidation of viscosity development in sesame protein systems through rheological indices. This approach ensures no bias toward formulation composition and applied pressure, offering valuable insights for optimizing formulation and processing conditions in food applications to enhance the functional properties of SPI-based products.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.