Yanfei Fan , Dongdong Li , Ziyu Zhuang , Dandan Gao , Dewen Zeng
{"title":"Thermodynamic modelling of the Li-Na-K-OH-SO4-H2O system for lithium hydroxide production simulation","authors":"Yanfei Fan , Dongdong Li , Ziyu Zhuang , Dandan Gao , Dewen Zeng","doi":"10.1016/j.hydromet.2025.106517","DOIUrl":null,"url":null,"abstract":"<div><div>The caustic addition process to Li<sub>2</sub>SO<sub>4</sub> leachate is a principal industrial process in producing lithium hydroxide. This process relies on the double-decomposition reaction between Li<sub>2</sub>SO<sub>4</sub> and NaOH in an aqueous system, followed by cooling to separate Na<sub>2</sub>SO<sub>4</sub>∙10H<sub>2</sub>O and evaporation to produce LiOH∙H<sub>2</sub>O. Due to the presence of Na and K impurities in lithium minerals, the operation takes place in the complex aqueous system Li-Na-K-OH-SO<sub>4</sub>-H<sub>2</sub>O. This work describes: (i) the development of a thermodynamic model for the complex Li-Na-K-OH-SO<sub>4</sub>-H<sub>2</sub>O system, (ii) validation of its reliability and (iii) quantitative simulation of lithium-hydroxide production. The results led to four key conclusions: 1) A relatively low concentration (Li < 20 g/L) in the caustic solution prevents the formation of Li<sub>2</sub>SO<sub>4</sub>∙3Na<sub>2</sub>SO<sub>4</sub>∙12H<sub>2</sub>O, the principal source of lithium loss. 2) The optimal cooling temperature for removing Na<sub>2</sub>SO<sub>4</sub>∙10H<sub>2</sub>O is −10 to −15 °C. 3) A moderate evaporation temperature (50–60 °C) is critical for achieving the high recovery of LiOH∙H<sub>2</sub>O in a single cycle. 4) The mother liquor remaining after the crystallisation of LiOH∙H<sub>2</sub>O can be fully recycled. Theoretically, Na and K are completely removed as Na<sub>2</sub>SO<sub>4</sub>∙10H<sub>2</sub>O and NaK<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub> solids.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106517"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000829","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The caustic addition process to Li2SO4 leachate is a principal industrial process in producing lithium hydroxide. This process relies on the double-decomposition reaction between Li2SO4 and NaOH in an aqueous system, followed by cooling to separate Na2SO4∙10H2O and evaporation to produce LiOH∙H2O. Due to the presence of Na and K impurities in lithium minerals, the operation takes place in the complex aqueous system Li-Na-K-OH-SO4-H2O. This work describes: (i) the development of a thermodynamic model for the complex Li-Na-K-OH-SO4-H2O system, (ii) validation of its reliability and (iii) quantitative simulation of lithium-hydroxide production. The results led to four key conclusions: 1) A relatively low concentration (Li < 20 g/L) in the caustic solution prevents the formation of Li2SO4∙3Na2SO4∙12H2O, the principal source of lithium loss. 2) The optimal cooling temperature for removing Na2SO4∙10H2O is −10 to −15 °C. 3) A moderate evaporation temperature (50–60 °C) is critical for achieving the high recovery of LiOH∙H2O in a single cycle. 4) The mother liquor remaining after the crystallisation of LiOH∙H2O can be fully recycled. Theoretically, Na and K are completely removed as Na2SO4∙10H2O and NaK3(SO4)2 solids.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.