Riemann boundary value problems for the Chaplygin gas outside a convex cornered wedge

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Bingsong Long
{"title":"Riemann boundary value problems for the Chaplygin gas outside a convex cornered wedge","authors":"Bingsong Long","doi":"10.1016/j.nonrwa.2025.104433","DOIUrl":null,"url":null,"abstract":"<div><div>We consider two-dimensional Riemann boundary value problems of Euler equations for the Chaplygin gas with two piecewise constant initial data outside a convex cornered wedge. In self-similar coordinates, when the flow at the wedge corner is subsonic, this problem can be reformulated as a boundary value problem for nonlinear degenerate elliptic equations in concave domains containing a corner larger than <span><math><mi>π</mi></math></span>. It is shown that there does not exist a global Lipschitz solution for this case. We analyze the sign of the flow velocity along a certain direction, and then obtain this result by deriving a contradiction. Besides, the unique existence of the solution to the problem is established when the flow at the wedge corner is supersonic. The results obtained here are also valid for the problem of shock diffraction by a convex cornered wedge.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104433"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001191","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider two-dimensional Riemann boundary value problems of Euler equations for the Chaplygin gas with two piecewise constant initial data outside a convex cornered wedge. In self-similar coordinates, when the flow at the wedge corner is subsonic, this problem can be reformulated as a boundary value problem for nonlinear degenerate elliptic equations in concave domains containing a corner larger than π. It is shown that there does not exist a global Lipschitz solution for this case. We analyze the sign of the flow velocity along a certain direction, and then obtain this result by deriving a contradiction. Besides, the unique existence of the solution to the problem is established when the flow at the wedge corner is supersonic. The results obtained here are also valid for the problem of shock diffraction by a convex cornered wedge.
凸角楔外Chaplygin气体的Riemann边值问题
考虑了在凸角楔外具有两个分段常数初始数据的Chaplygin气体的二维Riemann边值问题。在自相似坐标系下,当楔角处的流动为亚音速时,该问题可重新表述为包含大于π的角的凹域内非线性退化椭圆方程的边值问题。结果表明,对于这种情况,不存在全局Lipschitz解。我们分析了沿某一方向的流速符号,然后通过推导一个矛盾得到了这个结果。此外,还证明了当楔角处的流动为超音速时,问题解的唯一存在性。所得结果也适用于凸角楔的激波衍射问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信