Packing large balanced trees into bipartite graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Cristina G. Fernandes , Tássio Naia , Giovanne Santos , Maya Stein
{"title":"Packing large balanced trees into bipartite graphs","authors":"Cristina G. Fernandes ,&nbsp;Tássio Naia ,&nbsp;Giovanne Santos ,&nbsp;Maya Stein","doi":"10.1016/j.disc.2025.114641","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that for every <span><math><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span> there exists <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>N</mi></math></span> such that for every <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> any family of up to <span><math><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>γ</mi></mrow></msup></math></span> trees having at most <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>γ</mi><mo>)</mo><mi>n</mi></math></span> vertices in each bipartition class can be packed into <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. As a tool for our proof, we show an approximate bipartite version of the Komlós–Sárközy–Szemerédi Theorem, which we believe to be of independent interest.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114641"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002493","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for every γ>0 there exists n0N such that for every nn0 any family of up to n12γ trees having at most (1γ)n vertices in each bipartition class can be packed into Kn,n. As a tool for our proof, we show an approximate bipartite version of the Komlós–Sárközy–Szemerédi Theorem, which we believe to be of independent interest.
将大型平衡树包装成二部图
我们证明了对于每一个γ>;0,存在n0∈N,使得对于每一个N≥n0,在每一个二分类中有最多(1−γ) N个顶点的任何不超过n12−γ树族都可以被压缩到Kn, N中。作为我们证明的工具,我们展示了Komlós-Sárközy-Szemerédi定理的一个近似的二部版本,我们认为它是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信