MultiBanFakeDetect: Integrating advanced fusion techniques for multimodal detection of Bangla fake news in under-resourced contexts

Fatema Tuj Johora Faria , Mukaffi Bin Moin , Zayeed Hasan , Md. Arafat Alam Khandaker , Niful Islam , Khan Md Hasib , M.F. Mridha
{"title":"MultiBanFakeDetect: Integrating advanced fusion techniques for multimodal detection of Bangla fake news in under-resourced contexts","authors":"Fatema Tuj Johora Faria ,&nbsp;Mukaffi Bin Moin ,&nbsp;Zayeed Hasan ,&nbsp;Md. Arafat Alam Khandaker ,&nbsp;Niful Islam ,&nbsp;Khan Md Hasib ,&nbsp;M.F. Mridha","doi":"10.1016/j.jjimei.2025.100347","DOIUrl":null,"url":null,"abstract":"<div><div>The rise of false news in recent years poses significant risks to society. As misinformation spreads rapidly, automated detection systems are essential to mitigate its impact. However, most existing methods rely solely on textual analysis, limiting their effectiveness. The challenge is further compounded by the lack of a large-scale, multimodal dataset for Bangla fake news detection, as existing datasets are either small or unimodal. To address this, we introduce <strong>MultiBanFakeDetect</strong>, a novel multimodal dataset integrating both textual and visual information. This dataset comprises manually curated real and fake news samples from various online sources. Additionally, we propose <strong>MultiFusionFake</strong>, a hybrid multimodal fake news detection framework that fuses text and image modalities using an Early Fusion approach while also comparing Late and Intermediate fusion techniques. Our experiments show that MultiFusionFake, combining DenseNet-169 and mBERT, achieves 79.69% accuracy, outperforming the text-only mBERT model’s 73.13%, reflecting a 6.56 percentage point improvement. These results underscore the advantages of multimodal over unimodal methods. To the best of our knowledge, this is the first study on multimodal fake news detection in the under-resourced Bangla context, offering a promising approach to combating online misinformation.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"5 2","pages":"Article 100347"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096825000291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of false news in recent years poses significant risks to society. As misinformation spreads rapidly, automated detection systems are essential to mitigate its impact. However, most existing methods rely solely on textual analysis, limiting their effectiveness. The challenge is further compounded by the lack of a large-scale, multimodal dataset for Bangla fake news detection, as existing datasets are either small or unimodal. To address this, we introduce MultiBanFakeDetect, a novel multimodal dataset integrating both textual and visual information. This dataset comprises manually curated real and fake news samples from various online sources. Additionally, we propose MultiFusionFake, a hybrid multimodal fake news detection framework that fuses text and image modalities using an Early Fusion approach while also comparing Late and Intermediate fusion techniques. Our experiments show that MultiFusionFake, combining DenseNet-169 and mBERT, achieves 79.69% accuracy, outperforming the text-only mBERT model’s 73.13%, reflecting a 6.56 percentage point improvement. These results underscore the advantages of multimodal over unimodal methods. To the best of our knowledge, this is the first study on multimodal fake news detection in the under-resourced Bangla context, offering a promising approach to combating online misinformation.
MultiBanFakeDetect:整合先进的融合技术,在资源不足的情况下对孟加拉语假新闻进行多模式检测
近年来,虚假新闻的兴起给社会带来了重大风险。随着错误信息的迅速传播,自动检测系统对于减轻其影响至关重要。然而,大多数现有的方法仅仅依赖于文本分析,限制了它们的有效性。由于现有的数据集要么很小,要么单模态,因此缺乏用于孟加拉国假新闻检测的大规模、多模态数据集,进一步加剧了这一挑战。为了解决这个问题,我们引入了MultiBanFakeDetect,这是一个集成了文本和视觉信息的新型多模态数据集。该数据集包括来自各种在线来源的人工策划的真实和虚假新闻样本。此外,我们提出了MultiFusionFake,这是一个混合多模态假新闻检测框架,使用早期融合方法融合文本和图像模式,同时还比较了后期和中期融合技术。我们的实验表明,结合DenseNet-169和mBERT的MultiFusionFake达到了79.69%的准确率,优于纯文本mBERT模型的73.13%,提高了6.56个百分点。这些结果强调了多模态方法优于单模态方法。据我们所知,这是在资源不足的孟加拉国背景下对多模式假新闻检测的第一项研究,为打击在线错误信息提供了一种有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信