Flooding-resistant gas diffusion electrode design for MEA-type CO2 electrolyzer

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
Youngjin Doh , Junwon Oh , Sengwoo Kim , Wonhee Lee , Ki Tae Park
{"title":"Flooding-resistant gas diffusion electrode design for MEA-type CO2 electrolyzer","authors":"Youngjin Doh ,&nbsp;Junwon Oh ,&nbsp;Sengwoo Kim ,&nbsp;Wonhee Lee ,&nbsp;Ki Tae Park","doi":"10.1016/j.jcou.2025.103155","DOIUrl":null,"url":null,"abstract":"<div><div>The electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) powered by renewable electricity offers a sustainable pathway for converting CO<sub>2</sub> into valuable products, presenting a promising strategy to mitigate atmospheric CO<sub>2</sub> concentrations. The design of gas diffusion electrodes (GDEs) plays a crucial role in enhancing the CO<sub>2</sub>RR performance and stability in membrane-electrode assembly (MEA)-type electrolyzers. One of the primary challenges in industrializing CO<sub>2</sub>RR technologies is the flooding of GDEs, which significantly reduces the stability of CO<sub>2</sub>RR performance. Here, we design a flooding-resistant GDE by incorporation of macrochannels into GDE employing a nickel (Ni) foam substrate to mitigate GDE flooding and improve CO<sub>2</sub>RR performance and stability. The macrochannels in Ni foam-based GDE ensure sufficient mass transfer of CO<sub>2</sub> to the catalyst layer and the discharge of electrolyte, thereby minimizing the GDE flooding. The Ni foam based-GDE exhibits significantly higher through-plane conductivity and gas permeability compared to conventional carbon paper-based GDEs and retains hydrophobicity even after prolonged operation. This GDE demonstrates higher CO current density (<em>j</em><sub>CO</sub>) and lower cell voltage, maintaining excellent stability with a high CO Faradaic efficiency (FE<sub>CO</sub>) of 88.4 % over 50 h of continuous operation. These findings emphasize the importance of GDE designs with enhanced mass transfer capabilities to effectively address flooding challenges and improve the efficiency of CO<sub>2</sub>RR in MEA-type electrolyzers.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"98 ","pages":"Article 103155"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025001398","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic CO2 reduction reaction (CO2RR) powered by renewable electricity offers a sustainable pathway for converting CO2 into valuable products, presenting a promising strategy to mitigate atmospheric CO2 concentrations. The design of gas diffusion electrodes (GDEs) plays a crucial role in enhancing the CO2RR performance and stability in membrane-electrode assembly (MEA)-type electrolyzers. One of the primary challenges in industrializing CO2RR technologies is the flooding of GDEs, which significantly reduces the stability of CO2RR performance. Here, we design a flooding-resistant GDE by incorporation of macrochannels into GDE employing a nickel (Ni) foam substrate to mitigate GDE flooding and improve CO2RR performance and stability. The macrochannels in Ni foam-based GDE ensure sufficient mass transfer of CO2 to the catalyst layer and the discharge of electrolyte, thereby minimizing the GDE flooding. The Ni foam based-GDE exhibits significantly higher through-plane conductivity and gas permeability compared to conventional carbon paper-based GDEs and retains hydrophobicity even after prolonged operation. This GDE demonstrates higher CO current density (jCO) and lower cell voltage, maintaining excellent stability with a high CO Faradaic efficiency (FECO) of 88.4 % over 50 h of continuous operation. These findings emphasize the importance of GDE designs with enhanced mass transfer capabilities to effectively address flooding challenges and improve the efficiency of CO2RR in MEA-type electrolyzers.
mea型CO2电解槽抗泛洪气体扩散电极设计
由可再生电力驱动的电催化二氧化碳还原反应(CO2RR)为将二氧化碳转化为有价值的产品提供了一条可持续的途径,为降低大气中二氧化碳浓度提供了一种有前景的策略。气体扩散电极(GDEs)的设计对提高膜电极组件(MEA)型电解槽的CO2RR性能和稳定性起着至关重要的作用。CO2RR技术工业化的主要挑战之一是gde的泛滥,这大大降低了CO2RR性能的稳定性。在这里,我们设计了一种抗洪水的GDE,通过在GDE中加入宏观通道,采用镍(Ni)泡沫衬底来减轻GDE的洪水,提高CO2RR性能和稳定性。Ni泡沫基GDE中的宏观通道保证了CO2向催化剂层的充分传质和电解质的放电,从而最大限度地减少了GDE的泛洪。与传统的碳纸基gde相比,Ni泡沫基gde具有更高的通平面导电性和透气性,并且即使在长时间运行后仍保持疏水性。该GDE具有较高的CO电流密度(jCO)和较低的电池电压,在50 h的连续工作时间内保持良好的稳定性,CO法拉第效率(FECO)高达88.4% %。这些研究结果强调了具有增强传质能力的GDE设计的重要性,以有效解决淹水挑战并提高mea型电解槽中CO2RR的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信