Lakshmi V.G. Ishwarya , S. Vanisri , P.S. Basavaraj , M. Sreedhar , Lakshmi V. Jhansi , M. Muntazir , C. Gireesh , S.N.C.V.L. Pushpavalli
{"title":"Harnessing Advanced Genomic Approaches to Unveil and Enhance Brown Planthopper Resistance in Rice","authors":"Lakshmi V.G. Ishwarya , S. Vanisri , P.S. Basavaraj , M. Sreedhar , Lakshmi V. Jhansi , M. Muntazir , C. Gireesh , S.N.C.V.L. Pushpavalli","doi":"10.1016/j.rsci.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>Brown planthopper (BPH) is a highly destructive pest that presents a significant challenge to rice production, particularly in the Asia-Pacific region. Numerous BPH-resistant rice varieties have been successfully bred and released for commercial cultivation across diverse rice-growing ecosystems. However, resistance breakdown in several varieties carrying major resistance genes has been reported, highlighting the urgent need for the development of novel, genetically diverse, and broad-spectrum resistant varieties. To date, more than 45 resistance loci have been identified and mapped from both cultivated and wild rice species. Among these, a subset of genes (including <em>Bph1</em>, <em>Bph3</em>, <em>Bph6</em>, <em>Bph7</em>, <em>Bph9</em>, <em>Bph10</em>, <em>Bph14</em>, <em>Bph15</em>, <em>Bph18</em>, <em>Bph21</em>, <em>Bph26/2</em>, <em>bph29</em>, <em>Bph32</em>, <em>Bph37</em>, and <em>Bph30/Bph40</em>) have been positionally cloned. Most of these genes encode coiled-coil nucleotide-binding leucine-rich repeat proteins, which are central to plant immune responses, along with a few signaling molecules playing pivotal roles. In addition to these core resistance genes, various other genetic components, including miRNAs, protein kinases, and transcription factors, have been functionally characterized for their roles in mediating BPH resistance. The advent of post-genomic tools such as RNA sequencing and single-cell sequencing, along with cutting-edge genomic technologies like CRISPR/Cas gene editing, has significantly accelerated resistance breeding programs. In this context, we provide an overview of genetics, mapping, isolation, and functional characterization of BPH resistance, along with strategies for incorporating resistance using advanced genomics-assisted breeding tools. Furthermore, we present a snapshot of how the integration of genomics and novel breeding technologies holds great promise for dissecting the genetic architecture of pest resistance and accelerating crop improvement.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"32 3","pages":"Pages 339-352"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630825000411","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Brown planthopper (BPH) is a highly destructive pest that presents a significant challenge to rice production, particularly in the Asia-Pacific region. Numerous BPH-resistant rice varieties have been successfully bred and released for commercial cultivation across diverse rice-growing ecosystems. However, resistance breakdown in several varieties carrying major resistance genes has been reported, highlighting the urgent need for the development of novel, genetically diverse, and broad-spectrum resistant varieties. To date, more than 45 resistance loci have been identified and mapped from both cultivated and wild rice species. Among these, a subset of genes (including Bph1, Bph3, Bph6, Bph7, Bph9, Bph10, Bph14, Bph15, Bph18, Bph21, Bph26/2, bph29, Bph32, Bph37, and Bph30/Bph40) have been positionally cloned. Most of these genes encode coiled-coil nucleotide-binding leucine-rich repeat proteins, which are central to plant immune responses, along with a few signaling molecules playing pivotal roles. In addition to these core resistance genes, various other genetic components, including miRNAs, protein kinases, and transcription factors, have been functionally characterized for their roles in mediating BPH resistance. The advent of post-genomic tools such as RNA sequencing and single-cell sequencing, along with cutting-edge genomic technologies like CRISPR/Cas gene editing, has significantly accelerated resistance breeding programs. In this context, we provide an overview of genetics, mapping, isolation, and functional characterization of BPH resistance, along with strategies for incorporating resistance using advanced genomics-assisted breeding tools. Furthermore, we present a snapshot of how the integration of genomics and novel breeding technologies holds great promise for dissecting the genetic architecture of pest resistance and accelerating crop improvement.
Rice ScienceAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍:
Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.