{"title":"Laser-induced graphene-Embedded electrospun PVDF-ZnO: A synergistic piezo-tribo nanogenerator for efficient energy harvesting","authors":"Divya Chauhan , Arpit Kumar Singh , Sabatini Tyagi , Palani Iyamperumal Anand , Seeram Ramakrishna , Manish Kumar Srivastava","doi":"10.1016/j.carbon.2025.120521","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents development and performance evaluation of piezo-triboelectric hybrid nanogenerators (PTENGs) based on electrospun PVDF nanofibers modified with laser-induced graphene (LIG) and ZnO nanorods. By integrating piezoelectric and triboelectric mechanisms, the devices demonstrate significantly enhanced energy harvesting efficiency. The incorporation of LIG is expected to facilitate charge transport because of its conductive nature, while ZnO nanorods promotes β-phase crystallization in PVDF and enhances dipole alignment. X-ray diffraction and FTIR analyses confirms peak β-phase content of 84.7 % for PLZ-1.5 composition, while DSC reveals enhanced thermal stability and crystallinity (up to 86.4 %). SEM imaging shows improved fiber morphology, partial alignment, and reduced diameter distribution contributing to superior polarization efficiency. The direct piezoelectric charge coefficient (d<sub>33</sub>) reaches 50 pC/N for PLZ-1.5, indicating enhanced electromechanical coupling. The PLZ-1.5 exhibited highest output voltage (∼200 V) and power density (∼52 mW/cm<sup>3</sup>) that could glow 82 LEDs. Electrical output trends under varying load resistances confirm the critical role of nanofiller optimization in enhancing performance. These findings show importance of controlled nanofiller integration for maximizing efficiency of PTENGs. The optimized hybrid devices show great potential for application in self-powered sensors, wearable electronics, and next-generation portable energy harvesting systems.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"243 ","pages":"Article 120521"},"PeriodicalIF":10.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325005378","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents development and performance evaluation of piezo-triboelectric hybrid nanogenerators (PTENGs) based on electrospun PVDF nanofibers modified with laser-induced graphene (LIG) and ZnO nanorods. By integrating piezoelectric and triboelectric mechanisms, the devices demonstrate significantly enhanced energy harvesting efficiency. The incorporation of LIG is expected to facilitate charge transport because of its conductive nature, while ZnO nanorods promotes β-phase crystallization in PVDF and enhances dipole alignment. X-ray diffraction and FTIR analyses confirms peak β-phase content of 84.7 % for PLZ-1.5 composition, while DSC reveals enhanced thermal stability and crystallinity (up to 86.4 %). SEM imaging shows improved fiber morphology, partial alignment, and reduced diameter distribution contributing to superior polarization efficiency. The direct piezoelectric charge coefficient (d33) reaches 50 pC/N for PLZ-1.5, indicating enhanced electromechanical coupling. The PLZ-1.5 exhibited highest output voltage (∼200 V) and power density (∼52 mW/cm3) that could glow 82 LEDs. Electrical output trends under varying load resistances confirm the critical role of nanofiller optimization in enhancing performance. These findings show importance of controlled nanofiller integration for maximizing efficiency of PTENGs. The optimized hybrid devices show great potential for application in self-powered sensors, wearable electronics, and next-generation portable energy harvesting systems.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.