Rajae Haouari , Hua Sha , Mohit Kumar Singh , Evita Papazikou , Amna Chaudhry , Pete Thomas , Andrew Morris , Mohammed Quddus
{"title":"Analysing mobility and environmental impacts of automated ride-sharing services under mixed traffic","authors":"Rajae Haouari , Hua Sha , Mohit Kumar Singh , Evita Papazikou , Amna Chaudhry , Pete Thomas , Andrew Morris , Mohammed Quddus","doi":"10.1016/j.rtbm.2025.101434","DOIUrl":null,"url":null,"abstract":"<div><div>Shared Automated Vehicles (SAVs) hold great promise for the future of urban mobility. Automated ride-sharing services are expected to alleviate traffic congestion, reduce traffic emissions, and significantly improve road safety by combining advanced connected and autonomous vehicle (CAV) technology with the ride and/or car-sharing concept. These benefits, however, are highly dependent on the deployment concept of the service and environment including network characteristics, CAV technology, traffic compositions, population acceptance, etc. This study aims to assess the mobility and environmental impacts of introducing a door-to-door automated ride-sharing (ARS) service under different deployment scenarios. Two calibrated and validated city-scale networks with different characteristics were used: a suburban area in the Greater Manchester (UK) and a city-centre area in Leicester (UK). An optimisation technique for the vehicle routing problem was developed to efficiently operate ARS at a network-level. The customers' preference for individual and shared rides with Willingness to Share (WTS) was investigated to gain a better understanding of the performance indicators (i.e., delay, travel time, speed, kilometres-driven and emissions) The introduction of ARS was investigated under two deployment scenarios: 1) mixed with conventional human-driven vehicles (HDVs) and 2) mixed with HDVs with varying CAV market penetration rates. Findings suggest that introducing ARS can adversely impact mobility and the environment under mixed traffic, especially in suburban areas, and the benefits of an automated ride-sharing system are highly dependent on WTS. The findings will assist local authorities in formulating automated ride-sharing policies to manage the traffic on roads.</div></div>","PeriodicalId":47453,"journal":{"name":"Research in Transportation Business and Management","volume":"62 ","pages":"Article 101434"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Transportation Business and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221053952500149X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
Shared Automated Vehicles (SAVs) hold great promise for the future of urban mobility. Automated ride-sharing services are expected to alleviate traffic congestion, reduce traffic emissions, and significantly improve road safety by combining advanced connected and autonomous vehicle (CAV) technology with the ride and/or car-sharing concept. These benefits, however, are highly dependent on the deployment concept of the service and environment including network characteristics, CAV technology, traffic compositions, population acceptance, etc. This study aims to assess the mobility and environmental impacts of introducing a door-to-door automated ride-sharing (ARS) service under different deployment scenarios. Two calibrated and validated city-scale networks with different characteristics were used: a suburban area in the Greater Manchester (UK) and a city-centre area in Leicester (UK). An optimisation technique for the vehicle routing problem was developed to efficiently operate ARS at a network-level. The customers' preference for individual and shared rides with Willingness to Share (WTS) was investigated to gain a better understanding of the performance indicators (i.e., delay, travel time, speed, kilometres-driven and emissions) The introduction of ARS was investigated under two deployment scenarios: 1) mixed with conventional human-driven vehicles (HDVs) and 2) mixed with HDVs with varying CAV market penetration rates. Findings suggest that introducing ARS can adversely impact mobility and the environment under mixed traffic, especially in suburban areas, and the benefits of an automated ride-sharing system are highly dependent on WTS. The findings will assist local authorities in formulating automated ride-sharing policies to manage the traffic on roads.
期刊介绍:
Research in Transportation Business & Management (RTBM) will publish research on international aspects of transport management such as business strategy, communication, sustainability, finance, human resource management, law, logistics, marketing, franchising, privatisation and commercialisation. Research in Transportation Business & Management welcomes proposals for themed volumes from scholars in management, in relation to all modes of transport. Issues should be cross-disciplinary for one mode or single-disciplinary for all modes. We are keen to receive proposals that combine and integrate theories and concepts that are taken from or can be traced to origins in different disciplines or lessons learned from different modes and approaches to the topic. By facilitating the development of interdisciplinary or intermodal concepts, theories and ideas, and by synthesizing these for the journal''s audience, we seek to contribute to both scholarly advancement of knowledge and the state of managerial practice. Potential volume themes include: -Sustainability and Transportation Management- Transport Management and the Reduction of Transport''s Carbon Footprint- Marketing Transport/Branding Transportation- Benchmarking, Performance Measurement and Best Practices in Transport Operations- Franchising, Concessions and Alternate Governance Mechanisms for Transport Organisations- Logistics and the Integration of Transportation into Freight Supply Chains- Risk Management (or Asset Management or Transportation Finance or ...): Lessons from Multiple Modes- Engaging the Stakeholder in Transportation Governance- Reliability in the Freight Sector