A novel sensor-driven framework for preemptive failure detection in energy systems: Application to photovoltaic inverters

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Mohammad Badfar , Ratna Babu Chinnam , Shijia Zhao , Feng Qiu , Murat Yildirim
{"title":"A novel sensor-driven framework for preemptive failure detection in energy systems: Application to photovoltaic inverters","authors":"Mohammad Badfar ,&nbsp;Ratna Babu Chinnam ,&nbsp;Shijia Zhao ,&nbsp;Feng Qiu ,&nbsp;Murat Yildirim","doi":"10.1016/j.solener.2025.113554","DOIUrl":null,"url":null,"abstract":"<div><div>Effective asset monitoring in energy systems is essential for minimizing the levelized cost of energy, as failures can lead to significant energy losses and expensive repairs. This paper introduces a modular industrial framework for detecting failures preemptively in energy systems. The framework consists of three main modules: preprocessing of autonomous sensor data, mitigating external influences, and flagging failure risks. The first module applies data cleaning, transformation, calibration, and feature engineering techniques to refine raw sensor data for subsequent analysis. The second module minimizes the influence of external variables such as environmental and operational variables on the sensor signals. The third module utilizes advanced ensemble methods to detect anomalies indicative of potential failures. This study underscores the critical role of preprocessing in enhancing data quality and validates the framework’s effectiveness through a real-world case study involving photovoltaic (PV) inverters. The results demonstrate the framework’s ability to accurately identify inverters at risk of failure, enabling timely maintenance and reducing downtime.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113554"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25003172","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective asset monitoring in energy systems is essential for minimizing the levelized cost of energy, as failures can lead to significant energy losses and expensive repairs. This paper introduces a modular industrial framework for detecting failures preemptively in energy systems. The framework consists of three main modules: preprocessing of autonomous sensor data, mitigating external influences, and flagging failure risks. The first module applies data cleaning, transformation, calibration, and feature engineering techniques to refine raw sensor data for subsequent analysis. The second module minimizes the influence of external variables such as environmental and operational variables on the sensor signals. The third module utilizes advanced ensemble methods to detect anomalies indicative of potential failures. This study underscores the critical role of preprocessing in enhancing data quality and validates the framework’s effectiveness through a real-world case study involving photovoltaic (PV) inverters. The results demonstrate the framework’s ability to accurately identify inverters at risk of failure, enabling timely maintenance and reducing downtime.
一种新型传感器驱动的能源系统抢先故障检测框架:在光伏逆变器上的应用
能源系统中有效的资产监控对于最小化能源成本至关重要,因为故障可能导致严重的能源损失和昂贵的维修费用。本文介绍了一种用于能源系统故障预警的模块化工业框架。该框架由三个主要模块组成:自主传感器数据预处理、减轻外部影响和标记故障风险。第一个模块应用数据清洗、转换、校准和特征工程技术来提炼原始传感器数据,以供后续分析。第二个模块最大限度地减少外部变量,如环境和操作变量对传感器信号的影响。第三个模块使用先进的集成方法来检测指示潜在故障的异常。本研究强调了预处理在提高数据质量方面的关键作用,并通过涉及光伏(PV)逆变器的实际案例研究验证了该框架的有效性。结果表明,该框架能够准确识别存在故障风险的逆变器,实现及时维护并减少停机时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信