Potential biomethane productivity in the temperature phased anaerobic digestion process: Impact of organic load rate and solid retention time of acidogenic phase

IF 5.5 Q1 ENGINEERING, CHEMICAL
Encarnación Díaz-Domínguez , M.Eugenia Ibáñez-López , Montserrat Pérez , Francisco Jesús Fernández-Morales , José L. García-Morales
{"title":"Potential biomethane productivity in the temperature phased anaerobic digestion process: Impact of organic load rate and solid retention time of acidogenic phase","authors":"Encarnación Díaz-Domínguez ,&nbsp;M.Eugenia Ibáñez-López ,&nbsp;Montserrat Pérez ,&nbsp;Francisco Jesús Fernández-Morales ,&nbsp;José L. García-Morales","doi":"10.1016/j.ceja.2025.100791","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluated the biochemical methanogenic potential (BMP) of effluents from a thermophilic acidogenic anaerobic membrane bioreactor (AMBR) operated semi-continuously at different hydraulic retention times (HRT) and solids retention times (SRT). Thus, the influence of organic loading rate (OLR) and sludge age on mesophilic methane production was evaluated. In addition, two kinetic models (Gompertz and Cone) were proposed as tools for modelling methane production.</div><div>An 18.7 % increase in OLR (from 4.48 to 5.32 gVS/L·d) in the acidogenic reactor results in a 9.4 % increase in effluent biodegradability, which enhances the methanogenic phase and increases methane production by 23.9 % in volume (from 271.05 to 335.84 mL CH<sub>4</sub>) and 42.8 % in yield (from 127.85 to 182.52 mL CH<sub>4</sub>/gVS<sub>added</sub>).</div><div>For an OLR of 4.48 gVS/L·d, extending the SRT from 6 to 12 days results in a 20.9 % increase in methane production volume (from 271.05 to 327.65 mL CH<sub>4</sub>) and a 14.9 % increase in yield (from 127.85 to 146.93 mL CH<sub>4</sub>/gVS<sub>added</sub>). For an OLR of 5.32 gVS/L·d, extending the SRT from 4 to 8 days results in improved total solids (TS) and volatile solids (VS) removal, as well as a 20.9 % increase in methane production by volume (from 335.84 to 406.12 mL CH<sub>4</sub>). In both scenarios, extending the SRT leads to a longer lag time (λ) for methane production, with the Gompertz model fitting better than the Cone model.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"23 ","pages":"Article 100791"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated the biochemical methanogenic potential (BMP) of effluents from a thermophilic acidogenic anaerobic membrane bioreactor (AMBR) operated semi-continuously at different hydraulic retention times (HRT) and solids retention times (SRT). Thus, the influence of organic loading rate (OLR) and sludge age on mesophilic methane production was evaluated. In addition, two kinetic models (Gompertz and Cone) were proposed as tools for modelling methane production.
An 18.7 % increase in OLR (from 4.48 to 5.32 gVS/L·d) in the acidogenic reactor results in a 9.4 % increase in effluent biodegradability, which enhances the methanogenic phase and increases methane production by 23.9 % in volume (from 271.05 to 335.84 mL CH4) and 42.8 % in yield (from 127.85 to 182.52 mL CH4/gVSadded).
For an OLR of 4.48 gVS/L·d, extending the SRT from 6 to 12 days results in a 20.9 % increase in methane production volume (from 271.05 to 327.65 mL CH4) and a 14.9 % increase in yield (from 127.85 to 146.93 mL CH4/gVSadded). For an OLR of 5.32 gVS/L·d, extending the SRT from 4 to 8 days results in improved total solids (TS) and volatile solids (VS) removal, as well as a 20.9 % increase in methane production by volume (from 335.84 to 406.12 mL CH4). In both scenarios, extending the SRT leads to a longer lag time (λ) for methane production, with the Gompertz model fitting better than the Cone model.
温度阶段厌氧消化过程中潜在的生物甲烷产率:产酸阶段有机负荷率和固体停留时间的影响
本研究评估了一个半连续运行的嗜热产酸厌氧膜生物反应器(AMBR)在不同水力保留时间(HRT)和固体保留时间(SRT)下出水的生化产甲烷潜力(BMP)。因此,评估了有机负荷率(OLR)和污泥年龄对中温甲烷产量的影响。此外,还提出了两种动力学模型(Gompertz和Cone)作为模拟甲烷生产的工具。产酸反应器的OLR提高18.7%(从4.48 gVS/L·d提高到5.32 gVS/L·d),出水可生化性提高9.4%,从而增强了产甲烷阶段,甲烷产量增加23.9%(从271.05 mL CH4增加到335.84 mL CH4),产气量增加42.8%(从127.85 mL CH4增加到182.52 mL CH4/gVSadded)。当OLR为4.48 gVS/L·d时,将SRT从6天延长至12天,甲烷产量增加20.9%(从271.05 mL CH4增加到327.65 mL CH4),产量增加14.9%(从127.85 mL CH4增加到146.93 mL CH4/ gvsadd)。当OLR为5.32 gVS/L·d时,将SRT从4天延长至8天,可提高总固体(TS)和挥发性固体(VS)的去除率,并使甲烷产量增加20.9%(从335.84 mL CH4增加到406.12 mL CH4)。在这两种情况下,延长SRT会导致更长的甲烷生产滞后时间(λ), Gompertz模型比Cone模型拟合得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信