Green synthesis of Ce3+ doped V2O5 NPs as an advanced electrode material for possible supercapacitor and therapeutic applications

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
C.U. Charitha Ganesh , B.R. Radha Krushna , I.S. Pruthviraj , G. Ramakrishna , S.C. Sharma , Augustine George , Swati Mishra , U. Premkumar , K. Manjunatha , Sheng Yun Wu , Heng-Chih Kuo , V. Shivakumar , S. Devaraja , H. Nagabhushana
{"title":"Green synthesis of Ce3+ doped V2O5 NPs as an advanced electrode material for possible supercapacitor and therapeutic applications","authors":"C.U. Charitha Ganesh ,&nbsp;B.R. Radha Krushna ,&nbsp;I.S. Pruthviraj ,&nbsp;G. Ramakrishna ,&nbsp;S.C. Sharma ,&nbsp;Augustine George ,&nbsp;Swati Mishra ,&nbsp;U. Premkumar ,&nbsp;K. Manjunatha ,&nbsp;Sheng Yun Wu ,&nbsp;Heng-Chih Kuo ,&nbsp;V. Shivakumar ,&nbsp;S. Devaraja ,&nbsp;H. Nagabhushana","doi":"10.1016/j.jtice.2025.106223","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>A series of un-doped and (1-5 mol %) Ce³⁺ doped V<sub>2</sub>O<sub>5</sub> nanoparticles (NPs) are synthesized to enhance their electrochemical and biological properties. V<sub>2</sub>O<sub>5</sub> is a promising material for energy storage, but its performance can be improved through doping. Additionally, its potential biomedical applications, particularly in oxidative stress management and thrombosis prevention, are explored.</div></div><div><h3>Method</h3><div>A simple, eco-friendly green combustion method is used for the synthesis of Ce<sup>3+</sup> doped V<sub>2</sub>O<sub>5</sub> (1-5 mol %). Structural, morphological, and compositional characteristics are analyzed using PXRD, FE-SEM, TEM, XPS and UV-Vis. Electrochemical performance is evaluated in a 3 M KOH electrolyte, while biological activities, including antioxidant, hemocompatibility, and antiplatelet effects, are assessed through various assays.</div></div><div><h3>Significant Findings</h3><div>V₂O₅:5Ce<sup>3+</sup> exhibited a high surface area (653.76 m<sup>2</sup>/g), superior specific capacitance (<em>C<sub>sp</sub></em>) 180.47 F/g and excellent cycling stability (94.31% retention after 5000 cycles). Biologically, it showed strong antioxidant activity, RBC hemolysis protection, and 65.30 % platelet aggregation inhibition, making it a multifunctional material for energy storage and biomedical applications.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"174 ","pages":"Article 106223"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025002767","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

A series of un-doped and (1-5 mol %) Ce³⁺ doped V2O5 nanoparticles (NPs) are synthesized to enhance their electrochemical and biological properties. V2O5 is a promising material for energy storage, but its performance can be improved through doping. Additionally, its potential biomedical applications, particularly in oxidative stress management and thrombosis prevention, are explored.

Method

A simple, eco-friendly green combustion method is used for the synthesis of Ce3+ doped V2O5 (1-5 mol %). Structural, morphological, and compositional characteristics are analyzed using PXRD, FE-SEM, TEM, XPS and UV-Vis. Electrochemical performance is evaluated in a 3 M KOH electrolyte, while biological activities, including antioxidant, hemocompatibility, and antiplatelet effects, are assessed through various assays.

Significant Findings

V₂O₅:5Ce3+ exhibited a high surface area (653.76 m2/g), superior specific capacitance (Csp) 180.47 F/g and excellent cycling stability (94.31% retention after 5000 cycles). Biologically, it showed strong antioxidant activity, RBC hemolysis protection, and 65.30 % platelet aggregation inhibition, making it a multifunctional material for energy storage and biomedical applications.
绿色合成Ce3+掺杂V2O5纳米粒子作为一种可能用于超级电容器和治疗的先进电极材料
制备了一系列未掺杂和(1-5 mol %) Ce³+掺杂的V2O5纳米粒子(NPs),以增强其电化学和生物学性能。V2O5是一种很有前途的储能材料,但其性能可以通过掺杂来改善。此外,其潜在的生物医学应用,特别是在氧化应激管理和血栓预防,进行了探讨。方法采用简单、环保的绿色燃烧法合成Ce3+掺杂V2O5 (1-5 mol %)。采用PXRD、FE-SEM、TEM、XPS和UV-Vis分析了其结构、形态和组成特征。电化学性能在3 M KOH电解质中进行评估,而生物活性,包括抗氧化,血液相容性和抗血小板作用,通过各种检测进行评估。v₂O₅:5Ce3+具有高表面积(653.76 m2/g),优越的比电容(Csp) 180.47 F/g和出色的循环稳定性(5000次循环后保持率为94.31%)。生物学上,它具有较强的抗氧化活性、抗红细胞溶血作用和65.30%的血小板聚集抑制作用,是一种多功能储能材料和生物医学材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信