Alloying-Induced Crystal-Phase Transition in InxGaySez Alloys Grown on C-Sapphire Substrates by Molecular Beam Epitaxy: Implication for Next-Generation Optoelectronics

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Thi Bich Tuyen Huynh, Quynh Trang Tran, Nhu Quynh Diep*, Hong-Jyun Wang, Chun-Yen Lin, Umeshwar Reddy Nallasani, Wu-Ching Chou*, Thanh Tra Vu and Van-Qui Le, 
{"title":"Alloying-Induced Crystal-Phase Transition in InxGaySez Alloys Grown on C-Sapphire Substrates by Molecular Beam Epitaxy: Implication for Next-Generation Optoelectronics","authors":"Thi Bich Tuyen Huynh,&nbsp;Quynh Trang Tran,&nbsp;Nhu Quynh Diep*,&nbsp;Hong-Jyun Wang,&nbsp;Chun-Yen Lin,&nbsp;Umeshwar Reddy Nallasani,&nbsp;Wu-Ching Chou*,&nbsp;Thanh Tra Vu and Van-Qui Le,&nbsp;","doi":"10.1021/acs.cgd.4c0175010.1021/acs.cgd.4c01750","DOIUrl":null,"url":null,"abstract":"<p >Going beyond graphene and transition-metal dichalcogenides, group III–VI metal chalcogenides (GIIIMCs) with diverse crystallinities appear as new rising stars and have recently attracted numerous interesting physics for prospective optoelectronics, even though they face crucial challenges in their epitaxial technology. In this work, for the first time, large-compositional range In<sub><i>x</i></sub>Ga<sub><i>y</i></sub>Se<sub><i>z</i></sub> ternary alloys have been deposited on c-sapphire substrates by molecular beam epitaxy (MBE). We explored that MBE of In<sub><i>x</i></sub>Ga<sub><i>y</i></sub>Se<sub><i>z</i></sub> on c-sapphire substrates undergoes a two-dimensional (2D)-to-three-dimensional (3D) structural phase transition, resulting in mixed-dimensional alloy heterostructures of 2D hexagonal-In<sub><i>x</i></sub>Ga<sub><i>y</i></sub>Se<sub><i>z</i></sub> and 3D zinc-blende/wurtzite In<sub><i>x</i></sub>Ga<sub><i>y</i></sub>Se<sub><i>z</i></sub>. The 2D-to-3D transition supposedly originates from the indium segregation and depends strongly on the indium composition. We also found that modulating the growth parameters such as In/Ga ratio, deposition temperature, and deposition time could be an effective way to precisely control the 2D/3D crystal phases of the alloys. Overall, the results pave the way for phase/physical engineering of GIIIMC-based alloys through MBE and realizing mixed-dimensional alloy heterostructures for multifunctional applications.</p><p >In<sub><i>x</i></sub>Ga<sub><i>y</i></sub>Se<sub><i>z</i></sub> alloys were epitaxially grown on c-sapphire by MBE over a wide composition range. Structure characterizations revealed indium-induced 2D-to-3D phase transitions forming mixed-dimensional heterostructures, in which the phase can be tuned via indium content and growth conditions. This work demonstrates controllable phase engineering of III−VI alloys, opening opportunities for multifunctional mixed-dimensional semiconductor applications.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 12","pages":"4159–4168 4159–4168"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.4c01750","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01750","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Going beyond graphene and transition-metal dichalcogenides, group III–VI metal chalcogenides (GIIIMCs) with diverse crystallinities appear as new rising stars and have recently attracted numerous interesting physics for prospective optoelectronics, even though they face crucial challenges in their epitaxial technology. In this work, for the first time, large-compositional range InxGaySez ternary alloys have been deposited on c-sapphire substrates by molecular beam epitaxy (MBE). We explored that MBE of InxGaySez on c-sapphire substrates undergoes a two-dimensional (2D)-to-three-dimensional (3D) structural phase transition, resulting in mixed-dimensional alloy heterostructures of 2D hexagonal-InxGaySez and 3D zinc-blende/wurtzite InxGaySez. The 2D-to-3D transition supposedly originates from the indium segregation and depends strongly on the indium composition. We also found that modulating the growth parameters such as In/Ga ratio, deposition temperature, and deposition time could be an effective way to precisely control the 2D/3D crystal phases of the alloys. Overall, the results pave the way for phase/physical engineering of GIIIMC-based alloys through MBE and realizing mixed-dimensional alloy heterostructures for multifunctional applications.

InxGaySez alloys were epitaxially grown on c-sapphire by MBE over a wide composition range. Structure characterizations revealed indium-induced 2D-to-3D phase transitions forming mixed-dimensional heterostructures, in which the phase can be tuned via indium content and growth conditions. This work demonstrates controllable phase engineering of III−VI alloys, opening opportunities for multifunctional mixed-dimensional semiconductor applications.

分子束外延生长在c -蓝宝石衬底上的InxGaySez合金的合金诱导晶相转变:对下一代光电子学的启示
除了石墨烯和过渡金属二硫族化合物之外,具有不同结晶度的III-VI族金属硫族化合物(GIIIMCs)似乎是新兴的新星,最近吸引了许多有趣的物理学用于未来的光电子学,尽管它们在外延技术方面面临着关键的挑战。本文首次采用分子束外延(MBE)技术在c-蓝宝石衬底上沉积了大组成范围的InxGaySez三元合金。我们探索了InxGaySez在c-蓝宝石衬底上的MBE经历了二维(2D)到三维(3D)的结构相变,导致二维六边形InxGaySez和三维锌闪锌矿/细锌矿InxGaySez的混合维合金异质结构。二维到三维的转变可能源于铟的偏析,并且很大程度上取决于铟的成分。我们还发现,调节In/Ga比、沉积温度和沉积时间等生长参数是精确控制合金二维/三维晶相的有效方法。总体而言,该结果为通过MBE进行giiimc基合金的相/物理工程以及实现多功能应用的混合维合金异质结构铺平了道路。用MBE法在c-蓝宝石表面外延生长出了多种成分的InxGaySez合金。结构表征表明,铟诱导的二维到三维相变形成了混合维异质结构,其中相可以通过铟含量和生长条件来调节。这项工作展示了III - VI合金的可控相工程,为多功能混合维半导体应用开辟了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信