Eucalyptus-Enhanced Cotton: Pretreatment and Bioactive Coating Strategies for the Development of Sustainable Textiles with Antimicrobial and Antioxidant Activities for Skin Applications
IF 8.2 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cláudia S. Oliveira, Ana Costa, Daniel Mendanha, Tiago Macedo, Joana Moreira, Juliana A. S. A. Oliveira, Beatriz G. Bernardes, Carla J. Silva and Freni K. Tavaria*,
{"title":"Eucalyptus-Enhanced Cotton: Pretreatment and Bioactive Coating Strategies for the Development of Sustainable Textiles with Antimicrobial and Antioxidant Activities for Skin Applications","authors":"Cláudia S. Oliveira, Ana Costa, Daniel Mendanha, Tiago Macedo, Joana Moreira, Juliana A. S. A. Oliveira, Beatriz G. Bernardes, Carla J. Silva and Freni K. Tavaria*, ","doi":"10.1021/acsami.5c0280010.1021/acsami.5c02800","DOIUrl":null,"url":null,"abstract":"<p >Eucalyptus essential oils and extracts are widely recognized for their antimicrobial, antioxidant, insecticidal, anti-inflammatory, and aromatizing properties, making them highly valuable across pharmaceuticals, cosmetics, and textiles. For the design of biomedical textiles, cotton is favored for its mechanical strength, porosity, and biodegradability, but its vulnerability to microbial action limits its applications. To address this issue, natural compounds like eucalyptus essential oils and extracts have been prioritized over synthetic agents to enhance their antimicrobial properties. While bioactive textiles using essential oils have been well-documented, the incorporation of eucalyptus leaf extracts with different surface modifications of cotton remains largely unexplored. In this line, this study investigated pretreatment approaches to improve the uptake and uniformity of eucalyptus extract on cotton fibers. To achieve this, chitosan (CH), a cationic agent, and alum were applied to the cotton fabric to promote stronger electrostatic interactions and improve the binding of extract’s bioactive components. The functionalized fabrics were tested for antimicrobial activity against <i>Staphylococcus aureus</i>, <i>Staphylococcus epidermidis</i>, and <i>Escherichia coli</i>, antioxidant properties, and cytotoxicity using human keratinocytes. Eucalyptus-functionalized cotton, particularly with CH pretreatment, exhibited strong antibacterial activity against Gram-positive bacteria and enhanced antioxidant capacity in the DPPH assay. No cytotoxicity was detected with 8 h of exposure, but potential effects were observed after 24 h, indicating the need for further evaluation of long-term safety. These findings highlight the potential of eucalyptus-functionalized textiles for personalized clothing aimed at managing skin conditions linked to microbiota dysregulation, emphasizing the need for optimized functionalization and biocompatibility evaluation.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 24","pages":"35009–35022 35009–35022"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c02800","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Eucalyptus essential oils and extracts are widely recognized for their antimicrobial, antioxidant, insecticidal, anti-inflammatory, and aromatizing properties, making them highly valuable across pharmaceuticals, cosmetics, and textiles. For the design of biomedical textiles, cotton is favored for its mechanical strength, porosity, and biodegradability, but its vulnerability to microbial action limits its applications. To address this issue, natural compounds like eucalyptus essential oils and extracts have been prioritized over synthetic agents to enhance their antimicrobial properties. While bioactive textiles using essential oils have been well-documented, the incorporation of eucalyptus leaf extracts with different surface modifications of cotton remains largely unexplored. In this line, this study investigated pretreatment approaches to improve the uptake and uniformity of eucalyptus extract on cotton fibers. To achieve this, chitosan (CH), a cationic agent, and alum were applied to the cotton fabric to promote stronger electrostatic interactions and improve the binding of extract’s bioactive components. The functionalized fabrics were tested for antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli, antioxidant properties, and cytotoxicity using human keratinocytes. Eucalyptus-functionalized cotton, particularly with CH pretreatment, exhibited strong antibacterial activity against Gram-positive bacteria and enhanced antioxidant capacity in the DPPH assay. No cytotoxicity was detected with 8 h of exposure, but potential effects were observed after 24 h, indicating the need for further evaluation of long-term safety. These findings highlight the potential of eucalyptus-functionalized textiles for personalized clothing aimed at managing skin conditions linked to microbiota dysregulation, emphasizing the need for optimized functionalization and biocompatibility evaluation.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.