Semi-Supervised Vision Transformer Framework for AI-Based RHEED Image Classification of Ferroelectric Nitride MBE Growth

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yuyang Chen, Danhao Wang*, Dalei Jiang and Zetian Mi*, 
{"title":"Semi-Supervised Vision Transformer Framework for AI-Based RHEED Image Classification of Ferroelectric Nitride MBE Growth","authors":"Yuyang Chen,&nbsp;Danhao Wang*,&nbsp;Dalei Jiang and Zetian Mi*,&nbsp;","doi":"10.1021/acs.cgd.5c0017910.1021/acs.cgd.5c00179","DOIUrl":null,"url":null,"abstract":"<p >We report a semi-supervised Vision Transformer (ViT) framework for automated reflection high energy electron diffraction (RHEED) image classification of ferroelectric nitride (ScAlN) materials grown by molecular beam epitaxy (MBE). By incorporating pseudo-labeling, the new framework reduces the need for extensive manual annotations while maintaining robust performance across multiple substrate angles. The effects of three key hyperparameters: labeled-data proportion, the number of Transformer heads, and model depth on classification outcomes are explored. Our findings show that, although parameter tuning can yield incremental accuracy gains, simpler configurations (e.g., two heads and two layers) provide an optimal balance between accuracy and computational overhead. Adjusting embedding dimensions further refines the model without incurring excessive computational costs. Compared with fully supervised approaches, the proposed framework delivers equal or better accuracy using far fewer labeled samples and effortlessly adapts to diverse RHEED angles. These findings underscore the potential of semi-supervised ViT-based solutions to facilitate AI-driven standardization and optimization in semiconductor manufacturing.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 12","pages":"4295–4303 4295–4303"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00179","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report a semi-supervised Vision Transformer (ViT) framework for automated reflection high energy electron diffraction (RHEED) image classification of ferroelectric nitride (ScAlN) materials grown by molecular beam epitaxy (MBE). By incorporating pseudo-labeling, the new framework reduces the need for extensive manual annotations while maintaining robust performance across multiple substrate angles. The effects of three key hyperparameters: labeled-data proportion, the number of Transformer heads, and model depth on classification outcomes are explored. Our findings show that, although parameter tuning can yield incremental accuracy gains, simpler configurations (e.g., two heads and two layers) provide an optimal balance between accuracy and computational overhead. Adjusting embedding dimensions further refines the model without incurring excessive computational costs. Compared with fully supervised approaches, the proposed framework delivers equal or better accuracy using far fewer labeled samples and effortlessly adapts to diverse RHEED angles. These findings underscore the potential of semi-supervised ViT-based solutions to facilitate AI-driven standardization and optimization in semiconductor manufacturing.

基于ai的铁电氮化物MBE生长RHEED图像分类的半监督视觉变压器框架
本文报道了一种用于分子束外延(MBE)生长的铁电氮化物(ScAlN)材料的自动反射高能电子衍射(RHEED)图像分类的半监督视觉变压器(ViT)框架。通过合并伪标记,新框架减少了大量手动注释的需要,同时保持了跨多个基板角度的稳健性能。探讨了三个关键超参数:标记数据比例、Transformer磁头数量和模型深度对分类结果的影响。我们的研究结果表明,尽管参数调整可以产生增量精度增益,但更简单的配置(例如,两个磁头和两层)提供了精度和计算开销之间的最佳平衡。调整嵌入维数可以进一步细化模型,而不会产生过多的计算成本。与完全监督的方法相比,所提出的框架使用更少的标记样本提供相同或更好的准确性,并且毫不费力地适应不同的RHEED角度。这些发现强调了基于半监督viti的解决方案在促进人工智能驱动的半导体制造标准化和优化方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信