Size-Dependent Electrochemical and Morphological Properties of Magnetite Nanoparticles Adsorbed on Electrodes

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
Gayan Premaratne, Silan Bhandari, Charuksha Walgama*, Bhaskara V. Chikkaveeraiah, Albert Jin and Sadagopan Krishnan*, 
{"title":"Size-Dependent Electrochemical and Morphological Properties of Magnetite Nanoparticles Adsorbed on Electrodes","authors":"Gayan Premaratne,&nbsp;Silan Bhandari,&nbsp;Charuksha Walgama*,&nbsp;Bhaskara V. Chikkaveeraiah,&nbsp;Albert Jin and Sadagopan Krishnan*,&nbsp;","doi":"10.1021/acsmeasuresciau.5c0001410.1021/acsmeasuresciau.5c00014","DOIUrl":null,"url":null,"abstract":"<p >We investigated the influence of particle size on the electrochemical behavior of Fe<sub>3</sub>O<sub>4</sub> magnetite nanoparticles (MNPs) electrostatically adsorbed onto graphite electrodes modified with a preadsorbed poly(ethylenimine) polycation layer. Three hydrodynamic sizes (50, 100, and 200 nm) were selected to assess size-dependent differences in electrochemical response using cyclic voltammetry under well-controlled adsorption and measurement conditions. The 50 nm MNPs exhibited the highest electroactive response and peroxidase-like electrocatalytic currents, which are consistent with greater surface area-to-volume ratios. Qualitative image analysis from atomic force microscopy and scanning electron microscopy revealed closer particle spacing and more extended surface contact for the smaller MNPs, in contrast to isolated aggregates formed by larger particles. These surface-level differences were reflected in the electrochemical signals, where the 50 nm particles yielded higher electroactive surface coverage. The study demonstrates how particle size and interfacial organization influence electrochemical readouts, underscoring the utility of correlating microscopy with electrochemical data to evaluate nanoparticle-based sensing interfaces.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 3","pages":"325–331 325–331"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.5c00014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the influence of particle size on the electrochemical behavior of Fe3O4 magnetite nanoparticles (MNPs) electrostatically adsorbed onto graphite electrodes modified with a preadsorbed poly(ethylenimine) polycation layer. Three hydrodynamic sizes (50, 100, and 200 nm) were selected to assess size-dependent differences in electrochemical response using cyclic voltammetry under well-controlled adsorption and measurement conditions. The 50 nm MNPs exhibited the highest electroactive response and peroxidase-like electrocatalytic currents, which are consistent with greater surface area-to-volume ratios. Qualitative image analysis from atomic force microscopy and scanning electron microscopy revealed closer particle spacing and more extended surface contact for the smaller MNPs, in contrast to isolated aggregates formed by larger particles. These surface-level differences were reflected in the electrochemical signals, where the 50 nm particles yielded higher electroactive surface coverage. The study demonstrates how particle size and interfacial organization influence electrochemical readouts, underscoring the utility of correlating microscopy with electrochemical data to evaluate nanoparticle-based sensing interfaces.

磁铁矿纳米颗粒在电极上吸附的电化学和形态特性
研究了Fe3O4磁铁矿纳米颗粒(MNPs)静电吸附在预吸附聚亚胺聚阳离子层修饰的石墨电极上的电化学行为。在控制良好的吸附和测量条件下,选择三种流体动力学尺寸(50、100和200 nm),使用循环伏安法评估电化学响应的尺寸依赖性差异。50 nm的MNPs表现出最高的电活性响应和类似过氧化物酶的电催化电流,这与更大的表面积体积比一致。原子力显微镜和扫描电镜的定性图像分析显示,与大颗粒形成的孤立聚集体相比,较小的MNPs的颗粒间距更近,表面接触范围更广。这些表面水平的差异反映在电化学信号中,其中50 nm颗粒产生了更高的电活性表面覆盖率。该研究展示了颗粒大小和界面组织如何影响电化学读数,强调了将显微镜与电化学数据相关联以评估基于纳米颗粒的传感界面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信