Yunong Wang, Malavika Shashishekar, Dana M. Spence* and Lane A. Baker*,
{"title":"Subcellular Mechanical Imaging of Erythrocytes with Optically Correlated Scanning Ion Conductance Microscopy","authors":"Yunong Wang, Malavika Shashishekar, Dana M. Spence* and Lane A. Baker*, ","doi":"10.1021/acsmeasuresciau.5c0001910.1021/acsmeasuresciau.5c00019","DOIUrl":null,"url":null,"abstract":"<p >We report mapping the mechanical properties of human red blood cells at submicron scales. Mapping is achieved via a new approach to scanning ion conductance microscopy correlated with optical microscopy. A three-point calibration and affine transformation are utilized to correlate pixel locations registered in optical images with pipette position, which facilitates initial targeting and subsequent tracking and analysis of red blood cells. By recording the response of pipette approach curves and sample compliance at each approach, maps of the Young’s modulus of samples and pipette indentation are recorded at subcellular spatial resolution. Comparison of normal and diamide-treated red blood cells shows a significant increase in cell stiffness and a concomitant decrease in deformability, clearly demonstrating the quantitative abilities of the correlative approach taken here for stiffness measurements of intact cellular samples.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 3","pages":"345–352 345–352"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.5c00019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report mapping the mechanical properties of human red blood cells at submicron scales. Mapping is achieved via a new approach to scanning ion conductance microscopy correlated with optical microscopy. A three-point calibration and affine transformation are utilized to correlate pixel locations registered in optical images with pipette position, which facilitates initial targeting and subsequent tracking and analysis of red blood cells. By recording the response of pipette approach curves and sample compliance at each approach, maps of the Young’s modulus of samples and pipette indentation are recorded at subcellular spatial resolution. Comparison of normal and diamide-treated red blood cells shows a significant increase in cell stiffness and a concomitant decrease in deformability, clearly demonstrating the quantitative abilities of the correlative approach taken here for stiffness measurements of intact cellular samples.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.