Subcellular Mechanical Imaging of Erythrocytes with Optically Correlated Scanning Ion Conductance Microscopy

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
Yunong Wang, Malavika Shashishekar, Dana M. Spence* and Lane A. Baker*, 
{"title":"Subcellular Mechanical Imaging of Erythrocytes with Optically Correlated Scanning Ion Conductance Microscopy","authors":"Yunong Wang,&nbsp;Malavika Shashishekar,&nbsp;Dana M. Spence* and Lane A. Baker*,&nbsp;","doi":"10.1021/acsmeasuresciau.5c0001910.1021/acsmeasuresciau.5c00019","DOIUrl":null,"url":null,"abstract":"<p >We report mapping the mechanical properties of human red blood cells at submicron scales. Mapping is achieved via a new approach to scanning ion conductance microscopy correlated with optical microscopy. A three-point calibration and affine transformation are utilized to correlate pixel locations registered in optical images with pipette position, which facilitates initial targeting and subsequent tracking and analysis of red blood cells. By recording the response of pipette approach curves and sample compliance at each approach, maps of the Young’s modulus of samples and pipette indentation are recorded at subcellular spatial resolution. Comparison of normal and diamide-treated red blood cells shows a significant increase in cell stiffness and a concomitant decrease in deformability, clearly demonstrating the quantitative abilities of the correlative approach taken here for stiffness measurements of intact cellular samples.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 3","pages":"345–352 345–352"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.5c00019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report mapping the mechanical properties of human red blood cells at submicron scales. Mapping is achieved via a new approach to scanning ion conductance microscopy correlated with optical microscopy. A three-point calibration and affine transformation are utilized to correlate pixel locations registered in optical images with pipette position, which facilitates initial targeting and subsequent tracking and analysis of red blood cells. By recording the response of pipette approach curves and sample compliance at each approach, maps of the Young’s modulus of samples and pipette indentation are recorded at subcellular spatial resolution. Comparison of normal and diamide-treated red blood cells shows a significant increase in cell stiffness and a concomitant decrease in deformability, clearly demonstrating the quantitative abilities of the correlative approach taken here for stiffness measurements of intact cellular samples.

光学相关扫描离子电导显微镜下红细胞的亚细胞机械成像
我们报告绘制人体红细胞在亚微米尺度上的机械特性。通过一种与光学显微镜相关的扫描离子电导显微镜的新方法来实现映射。利用三点校准和仿射变换将光学图像中注册的像素位置与移液器位置相关联,从而促进了红细胞的初始定位和后续跟踪和分析。通过记录移液管接近曲线的响应和样品在每种方法下的顺应性,以亚细胞空间分辨率记录样品的杨氏模量和移液管压痕的图。正常红细胞和经二胺处理的红细胞的比较表明,细胞刚度显著增加,变形能力随之降低,这清楚地证明了本文采用的相关方法对完整细胞样本的刚度测量的定量能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信