Simulation-Based Hollow Fiber Membrane Module Design for Membrane-Assisted Antisolvent Crystallization

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Juncheng Hao, Shaofu Du, Yuchao Niu, Shaoqin Yin, Xuehua Ruan, Xiaoming Yan, Xiangcun Li, Gaohong He and Xiaobin Jiang*, 
{"title":"Simulation-Based Hollow Fiber Membrane Module Design for Membrane-Assisted Antisolvent Crystallization","authors":"Juncheng Hao,&nbsp;Shaofu Du,&nbsp;Yuchao Niu,&nbsp;Shaoqin Yin,&nbsp;Xuehua Ruan,&nbsp;Xiaoming Yan,&nbsp;Xiangcun Li,&nbsp;Gaohong He and Xiaobin Jiang*,&nbsp;","doi":"10.1021/acs.iecr.5c00690","DOIUrl":null,"url":null,"abstract":"<p >Membrane-assisted antisolvent crystallization (MAAC) is an innovative separation process that enables precise control of crystal morphology. The membrane packing density of the membrane module directly affects the crystallization solution mixing behavior and influences crystal morphology. Herein, through an integrated approach combining Computational Fluid Dynamics (CFD) simulations and MAAC experimental validation, this study systematically analyzes the fluid mixing behavior within membrane modules and the resulting crystal products under varying membrane packing densities. The experimental results demonstrate that, compared to the other two membrane modules with packing densities of 42.60 and 383.40 m<sup>2</sup>/m<sup>3</sup>, the optimally packed module (170.42 m<sup>2</sup>/m<sup>3</sup>) produces crystals with both larger particle sizes (&gt;75 μm) and narrower size distribution (C.V. &lt; 40%) across a broader range of shell side flow rates (36–60 mL/min). This study provides a potential tool to guide the design and optimization of membrane modules for the MAAC process.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 26","pages":"13397–13409"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.5c00690","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane-assisted antisolvent crystallization (MAAC) is an innovative separation process that enables precise control of crystal morphology. The membrane packing density of the membrane module directly affects the crystallization solution mixing behavior and influences crystal morphology. Herein, through an integrated approach combining Computational Fluid Dynamics (CFD) simulations and MAAC experimental validation, this study systematically analyzes the fluid mixing behavior within membrane modules and the resulting crystal products under varying membrane packing densities. The experimental results demonstrate that, compared to the other two membrane modules with packing densities of 42.60 and 383.40 m2/m3, the optimally packed module (170.42 m2/m3) produces crystals with both larger particle sizes (>75 μm) and narrower size distribution (C.V. < 40%) across a broader range of shell side flow rates (36–60 mL/min). This study provides a potential tool to guide the design and optimization of membrane modules for the MAAC process.

Abstract Image

Abstract Image

基于仿真的膜辅助抗溶剂结晶中空纤维膜模块设计
膜辅助抗溶剂结晶(MAAC)是一种创新的分离过程,可以精确控制晶体形态。膜组件的膜填充密度直接影响结晶溶液的混合行为,影响晶体形态。本文通过计算流体动力学(CFD)模拟和MAAC实验验证相结合的方法,系统分析了不同膜填充密度下膜模块内部的流体混合行为和生成的晶体产物。实验结果表明,与其他两种填充密度分别为42.60和383.40 m2/m3的膜组件相比,最优填充密度为170.42 m2/m3的膜组件产生的晶体粒径更大(>75 μm),尺寸分布更窄(C.V. <;40%)在更广泛的壳侧流速范围内(36-60 mL/min)。该研究为MAAC工艺中膜组件的设计和优化提供了潜在的指导工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信