Decoupling Redox Kinetics with Complementary d-Band Catalysis for High-Performance Lithium–Sulfur Batteries

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-16 DOI:10.1021/acsnano.5c05449
Wei Xiao, Kisoo Yoo, Jong-Hoon Kim, Hengyue Xu
{"title":"Decoupling Redox Kinetics with Complementary d-Band Catalysis for High-Performance Lithium–Sulfur Batteries","authors":"Wei Xiao, Kisoo Yoo, Jong-Hoon Kim, Hengyue Xu","doi":"10.1021/acsnano.5c05449","DOIUrl":null,"url":null,"abstract":"Advancing our understanding of heterogeneous catalysis is critical for resolving the kinetic challenges in lithium–sulfur batteries (LSBs). Herein, we propose a theoretical framework: the dual d-band model, which extends the classical d-band center theory by introducing two distinct catalytic sites with complementary d-band centers. Specifically, by strategically integrating two distinct catalytic sites with complementary d-band centers, where one aligns with the lowest unoccupied molecular orbital (LUMO) of sulfur species to optimize the sulfur reduction reaction (SRR) and the other aligns with the highest occupied molecular orbital (HOMO) to accelerate the sulfur evolution reaction (SER), the redox kinetics of sulfur species is effectively balanced. To verify this hypothesis, we developed a dual-site catalyst, Mn-RuO<sub>2</sub> (MRO), featuring Ru sites tailored for SRR and the supplementary Mn sites optimized for SER. Leveraging this dual-site synergy, the MRO-based cell achieved superior performance under limited electrolyte conditions. This work presents a promising strategy to regulate sulfur redox reactions for high-performance LSBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"12 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c05449","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing our understanding of heterogeneous catalysis is critical for resolving the kinetic challenges in lithium–sulfur batteries (LSBs). Herein, we propose a theoretical framework: the dual d-band model, which extends the classical d-band center theory by introducing two distinct catalytic sites with complementary d-band centers. Specifically, by strategically integrating two distinct catalytic sites with complementary d-band centers, where one aligns with the lowest unoccupied molecular orbital (LUMO) of sulfur species to optimize the sulfur reduction reaction (SRR) and the other aligns with the highest occupied molecular orbital (HOMO) to accelerate the sulfur evolution reaction (SER), the redox kinetics of sulfur species is effectively balanced. To verify this hypothesis, we developed a dual-site catalyst, Mn-RuO2 (MRO), featuring Ru sites tailored for SRR and the supplementary Mn sites optimized for SER. Leveraging this dual-site synergy, the MRO-based cell achieved superior performance under limited electrolyte conditions. This work presents a promising strategy to regulate sulfur redox reactions for high-performance LSBs.

Abstract Image

互补d带催化高性能锂硫电池的解耦氧化还原动力学
推进我们对多相催化的理解对于解决锂硫电池(LSBs)的动力学挑战至关重要。在此,我们提出了一个理论框架:双d带模型,它通过引入两个具有互补d带中心的不同催化位点来扩展经典d带中心理论。具体来说,通过战略性地整合两个具有互补d带中心的不同催化位点,其中一个与硫物种的最低未占据分子轨道(LUMO)对齐以优化硫还原反应(SRR),另一个与最高占据分子轨道(HOMO)对齐以加速硫演化反应(SER),有效平衡了硫物种的氧化还原动力学。为了验证这一假设,我们开发了一种双位点催化剂Mn- ruo2 (MRO),其特征是为SRR量身定制的Ru位点和为SER优化的补充Mn位点。利用这种双位点协同作用,基于核磁共振的电池在有限的电解质条件下取得了卓越的性能。这项工作提出了一种有前途的策略来调节高性能lbs的硫氧化还原反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信