High-performance pure blue perovskite light-emitting diodes with mixed ionic liquid interlayer for micro light-emitting diodes

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Min-Seong Kim, Jae-Min Myoung
{"title":"High-performance pure blue perovskite light-emitting diodes with mixed ionic liquid interlayer for micro light-emitting diodes","authors":"Min-Seong Kim,&nbsp;Jae-Min Myoung","doi":"10.1016/j.jallcom.2025.181685","DOIUrl":null,"url":null,"abstract":"<div><div>Despite remarkable advancements in perovskite light-emitting diode (PeLED) technology, achieving highly efficient pure blue PeLEDs remains challenging. Although ligand-assisted mixed-halide low-dimensional perovskite nanostructures have been employed, excessive organic ammonium spacers hinder charge transport, radiative recombination, and device stability. To address these limitations, in this study, an interlayer, prepared from a mixture of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF<sub>4</sub>) and 1-butyl-3-methylimidazolium acetate (BMIMAc) has been formed above the hole transport layer. This interlayer passivates defects such as metallic Pb and regulates the phase distribution of low-dimensional perovskites. The interaction between imidazolium and Pb<sup>2+</sup> ions facilitates controlled crystal growth and enhances defect passivation. The mixed ionic liquid interlayer improves film morphology, suppresses ion migration, and tunes energy band levels. The resulting pure blue PeLEDs, exhibiting emission at 465 nm, achieves a maximum luminance of 882 cd/m<sup>2</sup> and an external quantum efficiency (EQE) of 6.5%. Furthermore, micro PeLEDs, fabricated with a pattern size of 5 µm and pitch of 2.5 µm achieve a maximum luminance of 425 cd/m<sup>2</sup> and an EQE of 4.7%. These results validate the effectiveness of this strategy in enhancing device performance and stability.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1036 ","pages":"Article 181685"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825032463","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite remarkable advancements in perovskite light-emitting diode (PeLED) technology, achieving highly efficient pure blue PeLEDs remains challenging. Although ligand-assisted mixed-halide low-dimensional perovskite nanostructures have been employed, excessive organic ammonium spacers hinder charge transport, radiative recombination, and device stability. To address these limitations, in this study, an interlayer, prepared from a mixture of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) and 1-butyl-3-methylimidazolium acetate (BMIMAc) has been formed above the hole transport layer. This interlayer passivates defects such as metallic Pb and regulates the phase distribution of low-dimensional perovskites. The interaction between imidazolium and Pb2+ ions facilitates controlled crystal growth and enhances defect passivation. The mixed ionic liquid interlayer improves film morphology, suppresses ion migration, and tunes energy band levels. The resulting pure blue PeLEDs, exhibiting emission at 465 nm, achieves a maximum luminance of 882 cd/m2 and an external quantum efficiency (EQE) of 6.5%. Furthermore, micro PeLEDs, fabricated with a pattern size of 5 µm and pitch of 2.5 µm achieve a maximum luminance of 425 cd/m2 and an EQE of 4.7%. These results validate the effectiveness of this strategy in enhancing device performance and stability.

Abstract Image

用于微型发光二极管的混合离子液体夹层的高性能纯蓝色钙钛矿发光二极管
尽管钙钛矿发光二极管(PeLED)技术取得了显著进步,但实现高效的纯蓝色PeLED仍然具有挑战性。虽然采用了配体辅助的混合卤化物低维钙钛矿纳米结构,但过量的有机铵间隔物阻碍了电荷传输、辐射复合和器件稳定性。为了解决这些限制,在本研究中,由1-丁基-3-甲基咪唑四氟硼酸盐(BMIMBF4)和1-丁基-3-甲基咪唑醋酸盐(BMIMAc)的混合物制备的中间层在空穴传输层上方形成。该中间层钝化了金属铅等缺陷,并调节了低维钙钛矿的相分布。咪唑与Pb2+离子之间的相互作用有助于控制晶体生长并增强缺陷钝化。混合离子液体中间层改善了薄膜形态,抑制了离子迁移,并调节了能带水平。得到的纯蓝色发光二极管,发射波长为465 nm,最大亮度为882 cd/m2,外量子效率(EQE)为6.5%。此外,图案尺寸为5 μ m,间距为2.5 μ m的微型pled的最大亮度为425 cd/m2, EQE为4.7%。这些结果验证了该策略在提高器件性能和稳定性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信