Membrane-initiated estrogen receptor-α signaling in osteoblasts is crucial for normal regulation of the cortical bone in female mice

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Yiwen Jiang, Karin Horkeby, Petra Henning, Jianyao Wu, Karin H. Nilsson, Lina Lawenius, Sofia Movérare-Skrtic, Priti Gupta, Cecilia Engdahl, Antti Koskela, Juha Tuukkanen, Lei Li, Claes Ohlsson, Marie K. Lagerquist
{"title":"Membrane-initiated estrogen receptor-α signaling in osteoblasts is crucial for normal regulation of the cortical bone in female mice","authors":"Yiwen Jiang, Karin Horkeby, Petra Henning, Jianyao Wu, Karin H. Nilsson, Lina Lawenius, Sofia Movérare-Skrtic, Priti Gupta, Cecilia Engdahl, Antti Koskela, Juha Tuukkanen, Lei Li, Claes Ohlsson, Marie K. Lagerquist","doi":"10.1038/s41413-025-00439-8","DOIUrl":null,"url":null,"abstract":"<p>Membrane-initiated estrogen receptor α (mERα) signaling has been shown to affect bone mass in murine models. However, it remains unknown which cell types mediate the mERα-dependent effects on bone. In this study, we generated a novel mouse model with a conditional C451A mutation in <i>Esr1</i>, which enables selective knockout of the palmitoylation site essential for the membrane localization of ERα (C451A<sup>f/f</sup>). First, we used <i>Runx2</i>-Cre mice to generate <i>Runx2</i>-C451A<sup>f/f</sup> mice with conditional inactivation of mERα signaling in <i>Runx2</i>-expressing osteoblast lineage cells. No significant changes were observed in body weight, weights of estrogen-responsive organs, or serum concentrations of estradiol between female <i>Runx2</i>-C451A<sup>f/f</sup> and homozygous C451A<sup>f/f</sup> littermate controls. High-resolution microcomputed tomography analysis showed a consistent decrease in cortical bone mass in the tibia, femur, and vertebra L5 of <i>Runx2</i>-C451A<sup>f/f</sup> mice and three-point bending analysis of humerus revealed an impaired mechanical bone strength in <i>Runx2</i>-C451A<sup>f/f</sup> female mice compared to controls. Additionally, primary osteoblast cultures from mice lacking mERα signaling showed impaired differentiation compared to controls. In contrast, conditional inactivation of mERα signaling in hematopoietic cells, by transplantation of bone marrow from mice lacking mERα signaling in all cells to adult wildtype female mice, did not result in any skeletal alterations. In conclusion, this study demonstrates that mERα signaling in osteoblast lineage cells plays a crucial role in the regulation of cortical bone in female mice and shows that mERα inactivation in hematopoietic cells of adult female mice is dispensable for bone regulation.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"43 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-025-00439-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane-initiated estrogen receptor α (mERα) signaling has been shown to affect bone mass in murine models. However, it remains unknown which cell types mediate the mERα-dependent effects on bone. In this study, we generated a novel mouse model with a conditional C451A mutation in Esr1, which enables selective knockout of the palmitoylation site essential for the membrane localization of ERα (C451Af/f). First, we used Runx2-Cre mice to generate Runx2-C451Af/f mice with conditional inactivation of mERα signaling in Runx2-expressing osteoblast lineage cells. No significant changes were observed in body weight, weights of estrogen-responsive organs, or serum concentrations of estradiol between female Runx2-C451Af/f and homozygous C451Af/f littermate controls. High-resolution microcomputed tomography analysis showed a consistent decrease in cortical bone mass in the tibia, femur, and vertebra L5 of Runx2-C451Af/f mice and three-point bending analysis of humerus revealed an impaired mechanical bone strength in Runx2-C451Af/f female mice compared to controls. Additionally, primary osteoblast cultures from mice lacking mERα signaling showed impaired differentiation compared to controls. In contrast, conditional inactivation of mERα signaling in hematopoietic cells, by transplantation of bone marrow from mice lacking mERα signaling in all cells to adult wildtype female mice, did not result in any skeletal alterations. In conclusion, this study demonstrates that mERα signaling in osteoblast lineage cells plays a crucial role in the regulation of cortical bone in female mice and shows that mERα inactivation in hematopoietic cells of adult female mice is dispensable for bone regulation.

Abstract Image

成骨细胞中膜启动的雌激素受体-α信号传导对雌性小鼠皮质骨的正常调节至关重要
在小鼠模型中,膜启动雌激素受体α (mERα)信号传导已被证明影响骨量。然而,目前尚不清楚哪些细胞类型介导了mer α依赖性对骨的影响。在这项研究中,我们建立了一种新的小鼠模型,该模型在Esr1中具有条件C451A突变,可以选择性敲除ERα膜定位所必需的棕榈酰化位点(C451Af/f)。首先,我们使用Runx2-Cre小鼠产生Runx2-C451Af/f小鼠,这些小鼠在表达runx2的成骨细胞系细胞中有条件地失活mera信号。在雌性Runx2-C451Af/f和纯合子C451Af/f的对照之间,体重、雌激素反应器官的重量或血清雌二醇浓度没有明显变化。高分辨率显微计算机断层扫描分析显示,与对照组相比,Runx2-C451Af/f小鼠的胫骨、股骨和椎体L5的皮质骨量持续减少,肱骨三点弯曲分析显示,Runx2-C451Af/f雌性小鼠的机械骨强度受损。此外,与对照组相比,缺乏mERα信号的小鼠的原代成骨细胞培养表现出分化受损。相比之下,通过将所有细胞中缺乏mERα信号的小鼠的骨髓移植到成年野生型雌性小鼠中,造血细胞中mERα信号的条件失活并未导致任何骨骼改变。综上所述,本研究表明成骨细胞mERα信号在雌性小鼠皮质骨的调控中起着至关重要的作用,并且表明成年雌性小鼠造血细胞mERα失活对骨的调控是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信