Ali Zakeri, Zhuowen Zou, Hanning Chen, Mohsen Imani
{"title":"Configurable hyperdimensional graph representation","authors":"Ali Zakeri, Zhuowen Zou, Hanning Chen, Mohsen Imani","doi":"10.1016/j.artint.2025.104384","DOIUrl":null,"url":null,"abstract":"<div><div>Graph analysis has emerged as a crucial field, offering versatile solutions for real-world data representation, from social networks to biological systems. However, the intricate nature of graphs often necessitates a degree of processing, such as learning mappings to a vector space, to perform analysis tasks like node classification and link prediction. A promising approach to this is Hyperdimensional Computing (HDC), inspired by neuroscience and mathematics. HDC utilizes high-dimensional vectors to efficiently manipulate complex data structures and perform operations like superposition and association, enhancing knowledge graph representations with contextual and semantic information. Nevertheless, addressing limitations in existing HDC-based approaches to graph representation is essential. This paper thoroughly explores these methods and presents ConfiGR: Configurable Graph Representation, a novel framework that introduces an adjustable design, enhancing its versatility across various graph types and tasks, ultimately boosting performance in multiple graph-related tasks.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"347 ","pages":"Article 104384"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225001031","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graph analysis has emerged as a crucial field, offering versatile solutions for real-world data representation, from social networks to biological systems. However, the intricate nature of graphs often necessitates a degree of processing, such as learning mappings to a vector space, to perform analysis tasks like node classification and link prediction. A promising approach to this is Hyperdimensional Computing (HDC), inspired by neuroscience and mathematics. HDC utilizes high-dimensional vectors to efficiently manipulate complex data structures and perform operations like superposition and association, enhancing knowledge graph representations with contextual and semantic information. Nevertheless, addressing limitations in existing HDC-based approaches to graph representation is essential. This paper thoroughly explores these methods and presents ConfiGR: Configurable Graph Representation, a novel framework that introduces an adjustable design, enhancing its versatility across various graph types and tasks, ultimately boosting performance in multiple graph-related tasks.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.