Yu-Rong Liu, Shuhai Wen, Brajesh K. Singh, Wen Zhang, Zhongwen Liu, Xiuli Hao, Yun-Yun Hao, Manuel Delgado-Baquerizo, Wenfeng Tan, Qiaoyun Huang, Matthias C. Rillig, Yong-Guan Zhu
{"title":"Vulnerability of soil food webs to chemical pollution and climate change","authors":"Yu-Rong Liu, Shuhai Wen, Brajesh K. Singh, Wen Zhang, Zhongwen Liu, Xiuli Hao, Yun-Yun Hao, Manuel Delgado-Baquerizo, Wenfeng Tan, Qiaoyun Huang, Matthias C. Rillig, Yong-Guan Zhu","doi":"10.1038/s41559-025-02736-1","DOIUrl":null,"url":null,"abstract":"<p>Soil food webs are critical for maintaining ecosystem functions but are challenged by various stressors including climate change, habitat destruction and pollution. Although complex multitrophic networks can, in theory, buffer environmental stress, the effects of anthropogenic chemicals on soil food webs under climate change remain poorly understood. Here we propose that the effects of chemical pollution on soil communities have been largely underestimated, particularly for climate change-affected ecosystems. We explore the interactive effects of environmental stressors on soil food webs and the importance of integrating chemical pollution impacts into assessing soil food web stability. We also discuss a conceptual framework involving microbiome manipulation, community compensatory dynamics and interaction modulation to mitigate the combined effects of chemical pollution and climate change on soil food webs.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"10 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-025-02736-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil food webs are critical for maintaining ecosystem functions but are challenged by various stressors including climate change, habitat destruction and pollution. Although complex multitrophic networks can, in theory, buffer environmental stress, the effects of anthropogenic chemicals on soil food webs under climate change remain poorly understood. Here we propose that the effects of chemical pollution on soil communities have been largely underestimated, particularly for climate change-affected ecosystems. We explore the interactive effects of environmental stressors on soil food webs and the importance of integrating chemical pollution impacts into assessing soil food web stability. We also discuss a conceptual framework involving microbiome manipulation, community compensatory dynamics and interaction modulation to mitigate the combined effects of chemical pollution and climate change on soil food webs.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.