Acceleration of Positive Muons by a Radio-Frequency Cavity

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
S. Aritome, K. Futatsukawa, H. Hara, K. Hayasaka, Y. Ibaraki, T. Ichikawa, T. Iijima, H. Iinuma, Y. Ikedo, Y. Imai, K. Inami, K. Ishida, S. Kamal, S. Kamioka, N. Kawamura, M. Kimura, A. Koda, S. Koji, K. Kojima, A. Kondo, Y. Kondo, M. Kuzuba, R. Matsushita, T. Mibe, Y. Miyamoto, J. G. Nakamura, Y. Nakazawa, S. Ogawa, Y. Okazaki, A. Olin, M. Otani, S. Oyama, N. Saito, H. Sato, T. Sato, Y. Sato, K. Shimomura, Z. Shioya, P. Strasser, S. Sugiyama, K. Sumi, K. Suzuki, Y. Takeuchi, M. Tanida, J. Tojo, K. Ueda, S. Uetake, X. H. Xie, M. Yamada, S. Yamamoto, T. Yamazaki, K. Yamura, M. Yoshida, T. Yoshioka, M. Yotsuzuka
{"title":"Acceleration of Positive Muons by a Radio-Frequency Cavity","authors":"S. Aritome, K. Futatsukawa, H. Hara, K. Hayasaka, Y. Ibaraki, T. Ichikawa, T. Iijima, H. Iinuma, Y. Ikedo, Y. Imai, K. Inami, K. Ishida, S. Kamal, S. Kamioka, N. Kawamura, M. Kimura, A. Koda, S. Koji, K. Kojima, A. Kondo, Y. Kondo, M. Kuzuba, R. Matsushita, T. Mibe, Y. Miyamoto, J. G. Nakamura, Y. Nakazawa, S. Ogawa, Y. Okazaki, A. Olin, M. Otani, S. Oyama, N. Saito, H. Sato, T. Sato, Y. Sato, K. Shimomura, Z. Shioya, P. Strasser, S. Sugiyama, K. Sumi, K. Suzuki, Y. Takeuchi, M. Tanida, J. Tojo, K. Ueda, S. Uetake, X. H. Xie, M. Yamada, S. Yamamoto, T. Yamazaki, K. Yamura, M. Yoshida, T. Yoshioka, M. Yotsuzuka","doi":"10.1103/physrevlett.134.245001","DOIUrl":null,"url":null,"abstract":"Acceleration of positive muons from thermal energy to 100 keV has been demonstrated. Thermal muons were generated by resonant multiphoton ionization of muonium atoms emitted from a sheet of laser-ablated aerogel. The thermal muons were first electrostatically accelerated to 5.7 keV, followed by further acceleration to 100 keV using a radio-frequency quadrupole with an intensity of 2</a:mn>×</a:mo>10</a:mn></a:mrow>−</a:mo>3</a:mn></a:mrow></a:msup></a:mrow></a:mtext></a:mtext>μ</a:mi></a:mrow>+</a:mo></a:mrow></a:msup></a:mrow>/</a:mo>pulse</a:mi></a:mrow></a:mrow></a:math>. The transverse normalized rms emittance of the accelerated muons in the horizontal and vertical planes were <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mrow><c:mn>0.85</c:mn><c:mo>±</c:mo><c:mn>0.25</c:mn><c:mo stretchy=\"false\">(</c:mo><c:mi mathvariant=\"normal\">s</c:mi><c:mi mathvariant=\"normal\">t</c:mi><c:mi mathvariant=\"normal\">a</c:mi><c:mi mathvariant=\"normal\">t</c:mi><c:msubsup><c:mrow><c:mo stretchy=\"false\">)</c:mo></c:mrow><c:mrow><c:mo>−</c:mo><c:mn>0.13</c:mn></c:mrow><c:mrow><c:mo>+</c:mo><c:mn>0.22</c:mn></c:mrow></c:msubsup><c:mrow><c:mo stretchy=\"false\">(</c:mo><c:mi>syst</c:mi><c:mo stretchy=\"false\">)</c:mo></c:mrow><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mtext> </c:mtext></c:mrow><c:mrow><c:mrow><c:mi>π</c:mi></c:mrow><c:mtext> </c:mtext><c:mi>mm</c:mi><c:mtext> </c:mtext><c:mi>mrad</c:mi></c:mrow></c:mrow></c:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mrow><m:mn>0.32</m:mn><m:mo>±</m:mo><m:mn>0.03</m:mn><m:msubsup><m:mrow><m:mo stretchy=\"false\">(</m:mo><m:mi>stat</m:mi><m:mo stretchy=\"false\">)</m:mo></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>0.02</m:mn></m:mrow><m:mrow><m:mo>+</m:mo><m:mn>0.05</m:mn></m:mrow></m:msubsup><m:mrow><m:mo stretchy=\"false\">(</m:mo><m:mi>syst</m:mi><m:mo stretchy=\"false\">)</m:mo></m:mrow><m:mtext> </m:mtext><m:mtext> </m:mtext></m:mrow><m:mtext> </m:mtext><m:mrow><m:mi>π</m:mi><m:mtext> </m:mtext><m:mi>mm</m:mi><m:mtext> </m:mtext><m:mi>mrad</m:mi></m:mrow></m:mrow></m:math>, respectively. The measured emittance values demonstrated phase-space reduction by a factor of <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mn>2.0</s:mn><s:mo>×</s:mo><s:msup><s:mn>10</s:mn><s:mn>2</s:mn></s:msup></s:math> (horizontal) and <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mn>4.1</u:mn><u:mo>×</u:mo><u:msup><u:mn>10</u:mn><u:mn>2</u:mn></u:msup></u:math> (vertical) allowing good acceleration efficiency. These results pave the way to realize the first-ever muon accelerator for a variety of applications in particle physics, material science, and other fields. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"10 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.245001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acceleration of positive muons from thermal energy to 100 keV has been demonstrated. Thermal muons were generated by resonant multiphoton ionization of muonium atoms emitted from a sheet of laser-ablated aerogel. The thermal muons were first electrostatically accelerated to 5.7 keV, followed by further acceleration to 100 keV using a radio-frequency quadrupole with an intensity of 2×10−3μ+/pulse. The transverse normalized rms emittance of the accelerated muons in the horizontal and vertical planes were 0.85±0.25(stat)0.13+0.22(syst) π mm mrad and 0.32±0.03(stat)0.02+0.05(syst) π mm mrad, respectively. The measured emittance values demonstrated phase-space reduction by a factor of 2.0×102 (horizontal) and 4.1×102 (vertical) allowing good acceleration efficiency. These results pave the way to realize the first-ever muon accelerator for a variety of applications in particle physics, material science, and other fields. Published by the American Physical Society 2025
射频腔对正μ子的加速
正介子从热能加速到100 keV已被证明。热介子是由激光烧蚀气凝胶片发射的介子原子共振多光子电离产生的。热介子首先被静电加速到5.7 keV,然后使用强度为2×10−3μ+/脉冲的射频四极杆进一步加速到100 keV。加速μ子在水平和垂直平面上的横向归一化rms发射度分别为0.85±0.25(stat)−0.13+0.22(syst) π mm mrad和0.32±0.03(stat)−0.02+0.05(syst) π mm mrad。测量的发射度值显示相空间减少了2.0×102(水平)和4.1×102(垂直),从而实现了良好的加速效率。这些结果为实现首个μ子加速器在粒子物理、材料科学和其他领域的各种应用铺平了道路。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信