S. Aritome, K. Futatsukawa, H. Hara, K. Hayasaka, Y. Ibaraki, T. Ichikawa, T. Iijima, H. Iinuma, Y. Ikedo, Y. Imai, K. Inami, K. Ishida, S. Kamal, S. Kamioka, N. Kawamura, M. Kimura, A. Koda, S. Koji, K. Kojima, A. Kondo, Y. Kondo, M. Kuzuba, R. Matsushita, T. Mibe, Y. Miyamoto, J. G. Nakamura, Y. Nakazawa, S. Ogawa, Y. Okazaki, A. Olin, M. Otani, S. Oyama, N. Saito, H. Sato, T. Sato, Y. Sato, K. Shimomura, Z. Shioya, P. Strasser, S. Sugiyama, K. Sumi, K. Suzuki, Y. Takeuchi, M. Tanida, J. Tojo, K. Ueda, S. Uetake, X. H. Xie, M. Yamada, S. Yamamoto, T. Yamazaki, K. Yamura, M. Yoshida, T. Yoshioka, M. Yotsuzuka
{"title":"Acceleration of Positive Muons by a Radio-Frequency Cavity","authors":"S. Aritome, K. Futatsukawa, H. Hara, K. Hayasaka, Y. Ibaraki, T. Ichikawa, T. Iijima, H. Iinuma, Y. Ikedo, Y. Imai, K. Inami, K. Ishida, S. Kamal, S. Kamioka, N. Kawamura, M. Kimura, A. Koda, S. Koji, K. Kojima, A. Kondo, Y. Kondo, M. Kuzuba, R. Matsushita, T. Mibe, Y. Miyamoto, J. G. Nakamura, Y. Nakazawa, S. Ogawa, Y. Okazaki, A. Olin, M. Otani, S. Oyama, N. Saito, H. Sato, T. Sato, Y. Sato, K. Shimomura, Z. Shioya, P. Strasser, S. Sugiyama, K. Sumi, K. Suzuki, Y. Takeuchi, M. Tanida, J. Tojo, K. Ueda, S. Uetake, X. H. Xie, M. Yamada, S. Yamamoto, T. Yamazaki, K. Yamura, M. Yoshida, T. Yoshioka, M. Yotsuzuka","doi":"10.1103/physrevlett.134.245001","DOIUrl":null,"url":null,"abstract":"Acceleration of positive muons from thermal energy to 100 keV has been demonstrated. Thermal muons were generated by resonant multiphoton ionization of muonium atoms emitted from a sheet of laser-ablated aerogel. The thermal muons were first electrostatically accelerated to 5.7 keV, followed by further acceleration to 100 keV using a radio-frequency quadrupole with an intensity of 2</a:mn>×</a:mo>10</a:mn></a:mrow>−</a:mo>3</a:mn></a:mrow></a:msup></a:mrow></a:mtext></a:mtext>μ</a:mi></a:mrow>+</a:mo></a:mrow></a:msup></a:mrow>/</a:mo>pulse</a:mi></a:mrow></a:mrow></a:math>. The transverse normalized rms emittance of the accelerated muons in the horizontal and vertical planes were <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mrow><c:mn>0.85</c:mn><c:mo>±</c:mo><c:mn>0.25</c:mn><c:mo stretchy=\"false\">(</c:mo><c:mi mathvariant=\"normal\">s</c:mi><c:mi mathvariant=\"normal\">t</c:mi><c:mi mathvariant=\"normal\">a</c:mi><c:mi mathvariant=\"normal\">t</c:mi><c:msubsup><c:mrow><c:mo stretchy=\"false\">)</c:mo></c:mrow><c:mrow><c:mo>−</c:mo><c:mn>0.13</c:mn></c:mrow><c:mrow><c:mo>+</c:mo><c:mn>0.22</c:mn></c:mrow></c:msubsup><c:mrow><c:mo stretchy=\"false\">(</c:mo><c:mi>syst</c:mi><c:mo stretchy=\"false\">)</c:mo></c:mrow><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mtext> </c:mtext></c:mrow><c:mrow><c:mrow><c:mi>π</c:mi></c:mrow><c:mtext> </c:mtext><c:mi>mm</c:mi><c:mtext> </c:mtext><c:mi>mrad</c:mi></c:mrow></c:mrow></c:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mrow><m:mn>0.32</m:mn><m:mo>±</m:mo><m:mn>0.03</m:mn><m:msubsup><m:mrow><m:mo stretchy=\"false\">(</m:mo><m:mi>stat</m:mi><m:mo stretchy=\"false\">)</m:mo></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>0.02</m:mn></m:mrow><m:mrow><m:mo>+</m:mo><m:mn>0.05</m:mn></m:mrow></m:msubsup><m:mrow><m:mo stretchy=\"false\">(</m:mo><m:mi>syst</m:mi><m:mo stretchy=\"false\">)</m:mo></m:mrow><m:mtext> </m:mtext><m:mtext> </m:mtext></m:mrow><m:mtext> </m:mtext><m:mrow><m:mi>π</m:mi><m:mtext> </m:mtext><m:mi>mm</m:mi><m:mtext> </m:mtext><m:mi>mrad</m:mi></m:mrow></m:mrow></m:math>, respectively. The measured emittance values demonstrated phase-space reduction by a factor of <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mn>2.0</s:mn><s:mo>×</s:mo><s:msup><s:mn>10</s:mn><s:mn>2</s:mn></s:msup></s:math> (horizontal) and <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mn>4.1</u:mn><u:mo>×</u:mo><u:msup><u:mn>10</u:mn><u:mn>2</u:mn></u:msup></u:math> (vertical) allowing good acceleration efficiency. These results pave the way to realize the first-ever muon accelerator for a variety of applications in particle physics, material science, and other fields. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"10 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.245001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acceleration of positive muons from thermal energy to 100 keV has been demonstrated. Thermal muons were generated by resonant multiphoton ionization of muonium atoms emitted from a sheet of laser-ablated aerogel. The thermal muons were first electrostatically accelerated to 5.7 keV, followed by further acceleration to 100 keV using a radio-frequency quadrupole with an intensity of 2×10−3μ+/pulse. The transverse normalized rms emittance of the accelerated muons in the horizontal and vertical planes were 0.85±0.25(stat)−0.13+0.22(syst)πmmmrad and 0.32±0.03(stat)−0.02+0.05(syst)πmmmrad, respectively. The measured emittance values demonstrated phase-space reduction by a factor of 2.0×102 (horizontal) and 4.1×102 (vertical) allowing good acceleration efficiency. These results pave the way to realize the first-ever muon accelerator for a variety of applications in particle physics, material science, and other fields. Published by the American Physical Society2025
正介子从热能加速到100 keV已被证明。热介子是由激光烧蚀气凝胶片发射的介子原子共振多光子电离产生的。热介子首先被静电加速到5.7 keV,然后使用强度为2×10−3μ+/脉冲的射频四极杆进一步加速到100 keV。加速μ子在水平和垂直平面上的横向归一化rms发射度分别为0.85±0.25(stat)−0.13+0.22(syst) π mm mrad和0.32±0.03(stat)−0.02+0.05(syst) π mm mrad。测量的发射度值显示相空间减少了2.0×102(水平)和4.1×102(垂直),从而实现了良好的加速效率。这些结果为实现首个μ子加速器在粒子物理、材料科学和其他领域的各种应用铺平了道路。2025年由美国物理学会出版
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks