Harnessing cellular functionality for targeted cancer therapy: advancements in cell-drug conjugates and their mechanisms of action.

IF 7.7 Q1 ENGINEERING, BIOMEDICAL
Yan Liu, Rui Yin, Yuan Tian, Xin Meng
{"title":"Harnessing cellular functionality for targeted cancer therapy: advancements in cell-drug conjugates and their mechanisms of action.","authors":"Yan Liu, Rui Yin, Yuan Tian, Xin Meng","doi":"10.1088/2516-1091/ade212","DOIUrl":null,"url":null,"abstract":"<p><p>Could the next major advancement in cancer therapy stem from utilizing the body's own cells to precisely deliver potent anti-cancer agents directly to tumors? This innovative strategy, known as cell-drug conjugates (CDCs), represents a transformative approach to targeted cancer treatment by leveraging the inherent biological properties of cells. Leveraging the inherent biological properties of cells, these conjugates enable highly specific drug delivery and enhance therapeutic efficacy. Through mechanisms such as chemotaxis and immune evasion, CDCs can transport anticancer agents across biological barriers and selectively accumulate within the tumor microenvironment, facilitating precision therapy. Various cell types, including red blood cells, stem cells, and immune cells, serve as potential carriers in these systems, each possessing unique biological characteristics and antitumor ability. At present, there are few reviews on the preparation and function of CDCs in cancer therapy. This review systematically explores CDC applications in cancer therapy, including targeting mechanisms, fabrication strategies,<i>in vivo</i>pharmacology, and clinical advancements. Furthermore, the review examines the technical challenges associated with this innovative drug delivery and therapeutic strategy, while also evaluating its potential for clinical translation.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"7 3","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ade212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Could the next major advancement in cancer therapy stem from utilizing the body's own cells to precisely deliver potent anti-cancer agents directly to tumors? This innovative strategy, known as cell-drug conjugates (CDCs), represents a transformative approach to targeted cancer treatment by leveraging the inherent biological properties of cells. Leveraging the inherent biological properties of cells, these conjugates enable highly specific drug delivery and enhance therapeutic efficacy. Through mechanisms such as chemotaxis and immune evasion, CDCs can transport anticancer agents across biological barriers and selectively accumulate within the tumor microenvironment, facilitating precision therapy. Various cell types, including red blood cells, stem cells, and immune cells, serve as potential carriers in these systems, each possessing unique biological characteristics and antitumor ability. At present, there are few reviews on the preparation and function of CDCs in cancer therapy. This review systematically explores CDC applications in cancer therapy, including targeting mechanisms, fabrication strategies,in vivopharmacology, and clinical advancements. Furthermore, the review examines the technical challenges associated with this innovative drug delivery and therapeutic strategy, while also evaluating its potential for clinical translation.

利用细胞功能进行靶向癌症治疗:细胞药物偶联物及其作用机制的进展。
癌症治疗的下一个重大进展能否源于利用人体自身细胞将有效的抗癌药物直接输送到肿瘤上?这种被称为细胞药物偶联物(CDCs)的创新策略代表了一种利用细胞固有生物学特性进行靶向癌症治疗的变革性方法。利用细胞固有的生物学特性,这些缀合物可以实现高度特异性的药物传递并提高治疗效果。通过趋化性和免疫逃避等机制,cdc可以转运抗癌药物跨越生物屏障,选择性地在肿瘤微环境中积累,促进精准治疗。各种细胞类型,包括红细胞、干细胞和免疫细胞,都是这些系统的潜在载体,每种细胞都具有独特的生物学特性和抗肿瘤能力。目前,对CDCs的制备及其在肿瘤治疗中的作用的研究综述较少。本文系统地探讨了CDC在肿瘤治疗中的应用,包括靶向机制、制造策略、体内药理学和临床进展。此外,本综述探讨了与这种创新药物输送和治疗策略相关的技术挑战,同时也评估了其临床转化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信