Pain assessment on a numerical scale with uncertainty intervals: a proof-of-concept simulation study.

IF 2.5 Q2 CLINICAL NEUROLOGY
Frontiers in pain research (Lausanne, Switzerland) Pub Date : 2025-05-30 eCollection Date: 2025-01-01 DOI:10.3389/fpain.2025.1555185
Markus Huber, Ulrike Stamer
{"title":"Pain assessment on a numerical scale with uncertainty intervals: a proof-of-concept simulation study.","authors":"Markus Huber, Ulrike Stamer","doi":"10.3389/fpain.2025.1555185","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Reliable and validated scores assessing pain-related outcomes are an essential component of pain management. Point estimates, e.g., on the numeric rating scale (NRS), are widely used. Given the broad spectrum of physiological and psychological factors involved in a patient's pain experience, these point estimates entail inherent uncertainty. To account for this uncertainty, we propose a statistical framework featuring uncertainty intervals on a numerical scale assessing pain intensity.</p><p><strong>Methods: </strong>We describe a non-parametric statistical method to estimate the effectiveness of a pain intervention when patients provide an uncertainty interval of pain intensity rather than a single point estimate. We consider pain intensities on a generic numerical pain scale (NPS) ranging from 0 to 10 and illustrate the method's performance with proof-of-concept simulation studies and sensitivity analyses.</p><p><strong>Results: </strong>The simulation studies demonstrate that the non-parametric method can derive correct estimates of the average treatment effects in idealized settings. Importantly, the method can represent the traditional pain assessment with point estimates when the widths of the uncertainty intervals are gradually decreased toward the mean of the uncertainty interval.</p><p><strong>Conclusion: </strong>We proposed a new statistical framework to account for patient-specific uncertainties in pain intensity as measured on a numerical scale. The clinical importance of the method lies in its ability to reflect the large heterogeneity of individual pain experiences and the possibility of investigating pain-related aspects that go beyond a traditional pain assessment with point estimates. Future clinical studies are required to assess the method's clinical validity and utility.</p>","PeriodicalId":73097,"journal":{"name":"Frontiers in pain research (Lausanne, Switzerland)","volume":"6 ","pages":"1555185"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163017/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in pain research (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fpain.2025.1555185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Reliable and validated scores assessing pain-related outcomes are an essential component of pain management. Point estimates, e.g., on the numeric rating scale (NRS), are widely used. Given the broad spectrum of physiological and psychological factors involved in a patient's pain experience, these point estimates entail inherent uncertainty. To account for this uncertainty, we propose a statistical framework featuring uncertainty intervals on a numerical scale assessing pain intensity.

Methods: We describe a non-parametric statistical method to estimate the effectiveness of a pain intervention when patients provide an uncertainty interval of pain intensity rather than a single point estimate. We consider pain intensities on a generic numerical pain scale (NPS) ranging from 0 to 10 and illustrate the method's performance with proof-of-concept simulation studies and sensitivity analyses.

Results: The simulation studies demonstrate that the non-parametric method can derive correct estimates of the average treatment effects in idealized settings. Importantly, the method can represent the traditional pain assessment with point estimates when the widths of the uncertainty intervals are gradually decreased toward the mean of the uncertainty interval.

Conclusion: We proposed a new statistical framework to account for patient-specific uncertainties in pain intensity as measured on a numerical scale. The clinical importance of the method lies in its ability to reflect the large heterogeneity of individual pain experiences and the possibility of investigating pain-related aspects that go beyond a traditional pain assessment with point estimates. Future clinical studies are required to assess the method's clinical validity and utility.

Abstract Image

Abstract Image

Abstract Image

在不确定区间的数值尺度上的疼痛评估:概念验证模拟研究。
背景:评估疼痛相关结果的可靠和有效的评分是疼痛管理的重要组成部分。点估计,例如,在数字评定量表(NRS)上,被广泛使用。考虑到患者疼痛经历中涉及的生理和心理因素的广谱性,这些点估计需要固有的不确定性。为了解释这种不确定性,我们提出了一个统计框架,在评估疼痛强度的数值尺度上具有不确定性区间。方法:当患者提供疼痛强度的不确定区间而不是单点估计时,我们描述了一种非参数统计方法来估计疼痛干预的有效性。我们考虑疼痛强度的一般数值疼痛量表(NPS)范围从0到10,并通过概念验证模拟研究和敏感性分析说明该方法的性能。结果:模拟研究表明,非参数方法可以正确估计理想情况下的平均治疗效果。重要的是,当不确定区间的宽度逐渐减小到不确定区间的平均值时,该方法可以用点估计来表示传统的疼痛评估。结论:我们提出了一个新的统计框架来解释在数值尺度上测量的疼痛强度的患者特异性不确定性。该方法的临床重要性在于它能够反映个体疼痛经历的巨大异质性,以及超越传统的疼痛评估与点估计的研究疼痛相关方面的可能性。需要进一步的临床研究来评估该方法的临床有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信