Benchmarking machine learning models in lesion-symptom mapping for predicting language outcomes in stroke survivors.

Frontiers in neuroimaging Pub Date : 2025-05-30 eCollection Date: 2025-01-01 DOI:10.3389/fnimg.2025.1573816
Deepa Tilwani, Christian O'Reilly, Nicholas Riccardi, Valerie L Shalin, Dirk-Bart den Ouden, Julius Fridriksson, Svetlana V Shinkareva, Amit P Sheth, Rutvik H Desai
{"title":"Benchmarking machine learning models in lesion-symptom mapping for predicting language outcomes in stroke survivors.","authors":"Deepa Tilwani, Christian O'Reilly, Nicholas Riccardi, Valerie L Shalin, Dirk-Bart den Ouden, Julius Fridriksson, Svetlana V Shinkareva, Amit P Sheth, Rutvik H Desai","doi":"10.3389/fnimg.2025.1573816","DOIUrl":null,"url":null,"abstract":"<p><p>Several decades of research have investigated the neural connections between stroke-induced brain damage and language difficulties. Typically, lesion-symptom mapping (LSM) studies that address this connection have relied on mass univariate statistics, which do not account for multidimensional relationships between variables. Machine learning (ML) techniques, which can capture these intricate connections, offer a promising complement to LSM methods. To test this promise, we benchmarked ML models on structural and functional MRI to predict aphasia severity (<i>N</i> = 238) and naming impairment (<i>N</i> = 191) for a cohort of chronic-stage stroke survivors. We used nested cross-validation to examine performance along three dimensions: (1) parcellation schemes (JHU, AAL, BRO, and AICHA atlases), (2) neuroimaging modalities (resting-state functional connectivity, structural connectivity, mean diffusivity, fractional anisotropy, and lesion location) and (3) ML methods (Random Forest, Support Vector Regression, Decision Tree, K Nearest Neighbors, and Gradient Boosting). The best results were obtained by combining the JHU atlas, lesion location, and the Random Forest model. This combination yielded moderate to high correlations with the two different behavioral scores. Key regions identified included several perisylvian areas and pathways within the language network. This work complements existing LSM methods with new tools for improving the prediction of language outcomes in stroke survivors.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"4 ","pages":"1573816"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163030/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2025.1573816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several decades of research have investigated the neural connections between stroke-induced brain damage and language difficulties. Typically, lesion-symptom mapping (LSM) studies that address this connection have relied on mass univariate statistics, which do not account for multidimensional relationships between variables. Machine learning (ML) techniques, which can capture these intricate connections, offer a promising complement to LSM methods. To test this promise, we benchmarked ML models on structural and functional MRI to predict aphasia severity (N = 238) and naming impairment (N = 191) for a cohort of chronic-stage stroke survivors. We used nested cross-validation to examine performance along three dimensions: (1) parcellation schemes (JHU, AAL, BRO, and AICHA atlases), (2) neuroimaging modalities (resting-state functional connectivity, structural connectivity, mean diffusivity, fractional anisotropy, and lesion location) and (3) ML methods (Random Forest, Support Vector Regression, Decision Tree, K Nearest Neighbors, and Gradient Boosting). The best results were obtained by combining the JHU atlas, lesion location, and the Random Forest model. This combination yielded moderate to high correlations with the two different behavioral scores. Key regions identified included several perisylvian areas and pathways within the language network. This work complements existing LSM methods with new tools for improving the prediction of language outcomes in stroke survivors.

基准机器学习模型在预测中风幸存者的语言结果的病变症状映射。
几十年的研究已经调查了中风引起的脑损伤和语言障碍之间的神经联系。通常,解决这种联系的病变-症状映射(LSM)研究依赖于大量单变量统计,而不考虑变量之间的多维关系。机器学习(ML)技术可以捕获这些复杂的联系,为LSM方法提供了一个有希望的补充。为了验证这一前景,我们在结构和功能MRI上对ML模型进行基准测试,以预测慢性中风幸存者队列的失语严重程度(N = 238)和命名障碍(N = 191)。我们使用嵌套交叉验证来检查三个维度的性能:(1)分组方案(JHU、AAL、BRO和AICHA图谱),(2)神经成像模式(静息状态功能连通性、结构连通性、平均扩散率、分数各向异性和病变位置)和(3)ML方法(随机森林、支持向量回归、决策树、K近邻和梯度增强)。结合JHU图谱、病变位置和随机森林模型获得最佳结果。这种组合与两种不同的行为得分产生了中度到高度的相关性。确定的关键区域包括语言网络中的几个perisylvian区域和通路。这项工作补充了现有的LSM方法,为改善中风幸存者的语言结果预测提供了新的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信