Unfolding the Network of Peer Grades: A Latent Variable Approach.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Giuseppe Mignemi, Yunxiao Chen, Irini Moustaki
{"title":"Unfolding the Network of Peer Grades: A Latent Variable Approach.","authors":"Giuseppe Mignemi, Yunxiao Chen, Irini Moustaki","doi":"10.1017/psy.2025.10021","DOIUrl":null,"url":null,"abstract":"<p><p>Peer grading is an educational system in which students assess each other's work. It is commonly applied under Massive Open Online Course (MOOC) and offline classroom settings. With this system, instructors receive a reduced grading workload, and students enhance their understanding of course materials by grading others' work. Peer grading data have a complex dependence structure, for which all the peer grades may be dependent. This complex dependence structure is due to a network structure of peer grading, where each student can be viewed as a vertex of the network, and each peer grade serves as an edge connecting one student as a grader to another student as an examinee. This article introduces a latent variable model framework for analyzing peer grading data and develops a fully Bayesian procedure for its statistical inference. This framework has several advantages. First, when aggregating multiple peer grades, the average score and other simple summary statistics fail to account for grader effects and, thus, can be biased. The proposed approach produces more accurate model parameter estimates and, therefore, more accurate aggregated grades by modeling the heterogeneous grading behavior with latent variables. Second, the proposed method provides a way to assess each student's performance as a grader, which may be used to identify a pool of reliable graders or generate feedback to help students improve their grading. Third, our model may further provide insights into the peer grading system by answering questions such as whether a student who performs better in coursework also tends to be a more reliable grader. Finally, thanks to the Bayesian approach, uncertainty quantification is straightforward when inferring the student-specific latent variables as well as the structural parameters of the model. The proposed method is applied to two real-world datasets.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-22"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.10021","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Peer grading is an educational system in which students assess each other's work. It is commonly applied under Massive Open Online Course (MOOC) and offline classroom settings. With this system, instructors receive a reduced grading workload, and students enhance their understanding of course materials by grading others' work. Peer grading data have a complex dependence structure, for which all the peer grades may be dependent. This complex dependence structure is due to a network structure of peer grading, where each student can be viewed as a vertex of the network, and each peer grade serves as an edge connecting one student as a grader to another student as an examinee. This article introduces a latent variable model framework for analyzing peer grading data and develops a fully Bayesian procedure for its statistical inference. This framework has several advantages. First, when aggregating multiple peer grades, the average score and other simple summary statistics fail to account for grader effects and, thus, can be biased. The proposed approach produces more accurate model parameter estimates and, therefore, more accurate aggregated grades by modeling the heterogeneous grading behavior with latent variables. Second, the proposed method provides a way to assess each student's performance as a grader, which may be used to identify a pool of reliable graders or generate feedback to help students improve their grading. Third, our model may further provide insights into the peer grading system by answering questions such as whether a student who performs better in coursework also tends to be a more reliable grader. Finally, thanks to the Bayesian approach, uncertainty quantification is straightforward when inferring the student-specific latent variables as well as the structural parameters of the model. The proposed method is applied to two real-world datasets.

展开同伴等级网络:一种潜在变量方法。
同伴评分是一种教育制度,在这种制度下,学生们互相评估彼此的作业。它通常应用于大规模在线开放课程(MOOC)和线下课堂环境。有了这个系统,教师的评分工作量减少了,学生通过给别人的作业评分来加深对课程材料的理解。同伴评分数据具有复杂的依赖结构,所有的同伴评分都可能是依赖的。这种复杂的依赖结构是由于同伴评分的网络结构,每个学生都可以被视为网络的一个顶点,每个同伴评分都是连接作为评分者的一个学生和作为考生的另一个学生的边缘。本文介绍了一个潜在变量模型框架来分析同伴评分数据,并开发了一个完整的贝叶斯程序来进行统计推断。这个框架有几个优点。首先,在汇总多个同伴成绩时,平均分数和其他简单的汇总统计数据无法解释评分者的影响,因此可能存在偏差。该方法通过使用潜在变量对异质分级行为进行建模,产生更准确的模型参数估计,从而获得更准确的综合分级。其次,提出的方法提供了一种评估每个学生作为评分者的表现的方法,可以用来确定一个可靠的评分者池或产生反馈,以帮助学生提高他们的评分。第三,我们的模型可以通过回答诸如在课程中表现更好的学生是否也往往是一个更可靠的评分者等问题,进一步提供对同伴评分系统的见解。最后,由于贝叶斯方法,在推断学生特定的潜在变量以及模型的结构参数时,不确定性量化是直接的。将该方法应用于两个真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信