Identification of Factor Scores by Regression with External Variables in Exploratory Factor Analysis.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Naoto Yamashita
{"title":"Identification of Factor Scores by Regression with External Variables in Exploratory Factor Analysis.","authors":"Naoto Yamashita","doi":"10.1017/psy.2025.10025","DOIUrl":null,"url":null,"abstract":"<p><p>Factor score indeterminacy is a characteristic property of factor analysis (FA) models. This research introduces a novel procedure, regression-based factor score exploration (RFE), which uniquely determines factor scores and simultaneously estimates other parameters of the FA model. RFE uniquely determines factor scores by minimizing a loss function that balances FA and multivariate regression, regulated by a tuning parameter. Theoretical aspects of RFE, including the uniqueness of factor scores, the relationship between observed and latent variables, and rotational indeterminacy, are examined. Additionally, clustering-based factor exploration (CFE) is presented as a variant of RFE, derived by generalizing the penalty term to enable the clustering of factor scores. It is demonstrated that CFE creates cluster structures more accurately than the existing method. A simulation study shows that the proposed procedures accurately recover true parameter matrices even in the presence of error-contaminated data, with lower computational demand compared to existing methods. Real data examples illustrate that the proposed procedures provide interpretable results, demonstrating high relevance to the factor scores obtained by existing methods.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-14"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.10025","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Factor score indeterminacy is a characteristic property of factor analysis (FA) models. This research introduces a novel procedure, regression-based factor score exploration (RFE), which uniquely determines factor scores and simultaneously estimates other parameters of the FA model. RFE uniquely determines factor scores by minimizing a loss function that balances FA and multivariate regression, regulated by a tuning parameter. Theoretical aspects of RFE, including the uniqueness of factor scores, the relationship between observed and latent variables, and rotational indeterminacy, are examined. Additionally, clustering-based factor exploration (CFE) is presented as a variant of RFE, derived by generalizing the penalty term to enable the clustering of factor scores. It is demonstrated that CFE creates cluster structures more accurately than the existing method. A simulation study shows that the proposed procedures accurately recover true parameter matrices even in the presence of error-contaminated data, with lower computational demand compared to existing methods. Real data examples illustrate that the proposed procedures provide interpretable results, demonstrating high relevance to the factor scores obtained by existing methods.

探索性因子分析中外部变量回归识别因子得分。
因子得分不确定性是因子分析模型的一个特征。本研究引入了一种新颖的方法,即基于回归的因子得分探索(RFE),它可以唯一地确定因子得分,同时估计FA模型的其他参数。RFE通过最小化平衡FA和多元回归的损失函数(由调优参数调节)来唯一地确定因子得分。RFE的理论方面,包括因素得分的唯一性,观察变量和潜在变量之间的关系,以及旋转不确定性,进行了检查。此外,基于聚类的因子探索(CFE)作为RFE的一种变体,通过推广惩罚项来实现因子得分的聚类。结果表明,CFE比现有方法更准确地生成了聚类结构。仿真研究表明,与现有方法相比,该方法在存在误差的情况下也能准确地恢复真实的参数矩阵,且计算量较低。实际数据示例表明,所提出的程序提供了可解释的结果,显示出与现有方法获得的因子得分高度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信