{"title":"Cucurbitacin B inhibits Th17 cell differentiation via the suppression of the JAK/STAT pathway and alleviates collagen-induced arthritis in mice.","authors":"Shu-Ping Kung, Hira Umbreen, Jou-Hsuan Wang, Chih-Ming Tsia, Tim Chi-Chen Lin, Yu-Ting Chen","doi":"10.1177/03946320251348715","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Rheumatoid arthritis (RA) is a chronic autoimmune disease with limited treatment options and associated side effects or resistance. This study aims to investigate the therapeutic potential of the natural compound cucurbitacin B (CuB) in RA treatment.</p><p><strong>Methods: </strong>We utilized a collagen-induced arthritis (CIA) mouse model to evaluate the effects of CuB. Arthritis scores, histological damage, and pro-inflammatory cytokine expression (TNF-α, IL-17A) were assessed. In addition, network pharmacology analysis was performed to explore CuB's molecular mechanisms, focusing on Th17 cell differentiation, IL-17 signaling, and the JAK-STAT pathway.</p><p><strong>Results: </strong>CuB significantly reduced arthritis severity, decreased histological damage, and lowered the expression of pro-inflammatory cytokines in CIA mice. CuB was found to inhibit STAT3 phosphorylation and reduce the proportion of Th17 cells in the spleen, indicating its potential anti-inflammatory effects.</p><p><strong>Conclusion: </strong>These findings suggest that cucurbitacin B may serve as a promising novel therapeutic agent for rheumatoid arthritis by targeting key inflammatory pathways.</p>","PeriodicalId":48647,"journal":{"name":"International Journal of Immunopathology and Pharmacology","volume":"39 ","pages":"3946320251348715"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Immunopathology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/03946320251348715","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Rheumatoid arthritis (RA) is a chronic autoimmune disease with limited treatment options and associated side effects or resistance. This study aims to investigate the therapeutic potential of the natural compound cucurbitacin B (CuB) in RA treatment.
Methods: We utilized a collagen-induced arthritis (CIA) mouse model to evaluate the effects of CuB. Arthritis scores, histological damage, and pro-inflammatory cytokine expression (TNF-α, IL-17A) were assessed. In addition, network pharmacology analysis was performed to explore CuB's molecular mechanisms, focusing on Th17 cell differentiation, IL-17 signaling, and the JAK-STAT pathway.
Results: CuB significantly reduced arthritis severity, decreased histological damage, and lowered the expression of pro-inflammatory cytokines in CIA mice. CuB was found to inhibit STAT3 phosphorylation and reduce the proportion of Th17 cells in the spleen, indicating its potential anti-inflammatory effects.
Conclusion: These findings suggest that cucurbitacin B may serve as a promising novel therapeutic agent for rheumatoid arthritis by targeting key inflammatory pathways.
期刊介绍:
International Journal of Immunopathology and Pharmacology is an Open Access peer-reviewed journal publishing original papers describing research in the fields of immunology, pathology and pharmacology. The intention is that the journal should reflect both the experimental and clinical aspects of immunology as well as advances in the understanding of the pathology and pharmacology of the immune system.