LED-based, real-time, hyperspectral imaging device.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-05-01 Epub Date: 2025-06-12 DOI:10.1117/1.JMI.12.3.035002
Naeeme Modir, Maysam Shahedi, James Dormer, Ling Ma, Baowei Fei
{"title":"LED-based, real-time, hyperspectral imaging device.","authors":"Naeeme Modir, Maysam Shahedi, James Dormer, Ling Ma, Baowei Fei","doi":"10.1117/1.JMI.12.3.035002","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study demonstrates the feasibility of using an LED array for hyperspectral imaging (HSI). The prototype validates the concept and provides insights into the design of future HSI applications. Our goal is to design, develop, and test a real-time, LED-based HSI prototype as a proof-of-principle device for <i>in situ</i> hyperspectral imaging using LEDs.</p><p><strong>Approach: </strong>A prototype was designed based on a multiwavelength LED array and a monochrome camera and was tested to investigate the properties of the LED-based HSI. The LED array consisted of 18 LEDs in 18 different wavelengths from 405 nm to 910 nm. The performance of the imaging system was evaluated on different normal and cancerous <i>ex vivo</i> tissues. The impact of imaging conditions on the HSI quality was investigated. The LED-based HSI device was compared with a reference hyperspectral camera system.</p><p><strong>Results: </strong>The hyperspectral signatures of different imaging targets were acquired using our prototype HSI device, which are comparable to the data obtained using the reference HSI system.</p><p><strong>Conclusions: </strong>The feasibility of employing a spectral LED array as the illumination source for high-speed and high-quality HSI has been demonstrated. The use of LEDs for HSI can open the door to numerous applications in endoscopic, laparoscopic, and handheld HSI devices.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 3","pages":"035002"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.3.035002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study demonstrates the feasibility of using an LED array for hyperspectral imaging (HSI). The prototype validates the concept and provides insights into the design of future HSI applications. Our goal is to design, develop, and test a real-time, LED-based HSI prototype as a proof-of-principle device for in situ hyperspectral imaging using LEDs.

Approach: A prototype was designed based on a multiwavelength LED array and a monochrome camera and was tested to investigate the properties of the LED-based HSI. The LED array consisted of 18 LEDs in 18 different wavelengths from 405 nm to 910 nm. The performance of the imaging system was evaluated on different normal and cancerous ex vivo tissues. The impact of imaging conditions on the HSI quality was investigated. The LED-based HSI device was compared with a reference hyperspectral camera system.

Results: The hyperspectral signatures of different imaging targets were acquired using our prototype HSI device, which are comparable to the data obtained using the reference HSI system.

Conclusions: The feasibility of employing a spectral LED array as the illumination source for high-speed and high-quality HSI has been demonstrated. The use of LEDs for HSI can open the door to numerous applications in endoscopic, laparoscopic, and handheld HSI devices.

基于led,实时,高光谱成像设备。
目的:本研究证明了LED阵列用于高光谱成像(HSI)的可行性。该原型验证了这一概念,并为未来HSI应用的设计提供了见解。我们的目标是设计、开发和测试一个实时的、基于led的HSI原型,作为使用led进行原位高光谱成像的原理验证设备。方法:基于多波长LED阵列和单色相机设计了一个原型,并进行了测试,以研究基于LED的HSI的特性。LED阵列由18个不同波长的LED组成,波长从405 nm到910 nm不等。在不同的正常和癌变离体组织上评估了成像系统的性能。研究了成像条件对HSI质量的影响。将基于led的HSI器件与参考高光谱相机系统进行了比较。结果:使用我们的原型HSI设备获得了不同成像目标的高光谱特征,与使用参考HSI系统获得的数据相当。结论:采用光谱LED阵列作为高速高质量HSI照明光源的可行性已经得到证明。在HSI中使用led可以为内窥镜、腹腔镜和手持式HSI设备的众多应用打开大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信