Comparing percent breast density assessments of an AI-based method with expert reader estimates: inter-observer variability.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-11-01 Epub Date: 2025-06-12 DOI:10.1117/1.JMI.12.S2.S22011
Stepan Romanov, Sacha Howell, Elaine Harkness, Dafydd Gareth Evans, Sue Astley, Martin Fergie
{"title":"Comparing percent breast density assessments of an AI-based method with expert reader estimates: inter-observer variability.","authors":"Stepan Romanov, Sacha Howell, Elaine Harkness, Dafydd Gareth Evans, Sue Astley, Martin Fergie","doi":"10.1117/1.JMI.12.S2.S22011","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Breast density estimation is an important part of breast cancer risk assessment, as mammographic density is associated with risk. However, density assessed by multiple experts can be subject to high inter-observer variability, so automated methods are increasingly used. We investigate the inter-reader variability and risk prediction for expert assessors and a deep learning approach.</p><p><strong>Approach: </strong>Screening data from a cohort of 1328 women, case-control matched, was used to compare between two expert readers and between a single reader and a deep learning model, Manchester artificial intelligence - visual analog scale (MAI-VAS). Bland-Altman analysis was used to assess the variability and matched concordance index to assess risk.</p><p><strong>Results: </strong>Although the mean differences for the two experiments were alike, the limits of agreement between MAI-VAS and a single reader are substantially lower at +SD (standard deviation) 21 (95% CI: 19.65, 21.69) -SD 22 (95% CI: <math><mrow><mo>-</mo> <mn>22.71</mn></mrow> </math> , <math><mrow><mo>-</mo> <mn>20.68</mn></mrow> </math> ) than between two expert readers +SD 31 (95% CI: 32.08, 29.23) -SD 29 (95% CI: <math><mrow><mo>-</mo> <mn>29.94</mn></mrow> </math> , <math><mrow><mo>-</mo> <mn>27.09</mn></mrow> </math> ). In addition, breast cancer risk discrimination for the deep learning method and density readings from a single expert was similar, with a matched concordance of 0.628 (95% CI: 0.598, 0.658) and 0.624 (95% CI: 0.595, 0.654), respectively. The automatic method had a similar inter-view agreement to experts and maintained consistency across density quartiles.</p><p><strong>Conclusions: </strong>The artificial intelligence breast density assessment tool MAI-VAS has a better inter-observer agreement with a randomly selected expert reader than that between two expert readers. Deep learning-based density methods provide consistent density scores without compromising on breast cancer risk discrimination.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22011"},"PeriodicalIF":1.9000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.S2.S22011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Breast density estimation is an important part of breast cancer risk assessment, as mammographic density is associated with risk. However, density assessed by multiple experts can be subject to high inter-observer variability, so automated methods are increasingly used. We investigate the inter-reader variability and risk prediction for expert assessors and a deep learning approach.

Approach: Screening data from a cohort of 1328 women, case-control matched, was used to compare between two expert readers and between a single reader and a deep learning model, Manchester artificial intelligence - visual analog scale (MAI-VAS). Bland-Altman analysis was used to assess the variability and matched concordance index to assess risk.

Results: Although the mean differences for the two experiments were alike, the limits of agreement between MAI-VAS and a single reader are substantially lower at +SD (standard deviation) 21 (95% CI: 19.65, 21.69) -SD 22 (95% CI: - 22.71 , - 20.68 ) than between two expert readers +SD 31 (95% CI: 32.08, 29.23) -SD 29 (95% CI: - 29.94 , - 27.09 ). In addition, breast cancer risk discrimination for the deep learning method and density readings from a single expert was similar, with a matched concordance of 0.628 (95% CI: 0.598, 0.658) and 0.624 (95% CI: 0.595, 0.654), respectively. The automatic method had a similar inter-view agreement to experts and maintained consistency across density quartiles.

Conclusions: The artificial intelligence breast density assessment tool MAI-VAS has a better inter-observer agreement with a randomly selected expert reader than that between two expert readers. Deep learning-based density methods provide consistent density scores without compromising on breast cancer risk discrimination.

比较基于人工智能的方法与专家读者估计的乳腺密度百分比评估:观察者之间的可变性。
目的:乳腺密度评估是乳腺癌风险评估的重要组成部分,因为乳房x线摄影密度与风险相关。然而,由多位专家评估的密度可能会受到观测者之间高度可变性的影响,因此越来越多地使用自动化方法。我们研究了专家评估和深度学习方法的读者间变异性和风险预测。方法:从1328名女性队列中筛选数据,病例对照匹配,用于比较两名专家读者之间以及单一读者与深度学习模型曼彻斯特人工智能-视觉模拟量表(MAI-VAS)之间的差异。采用Bland-Altman分析评估变异性,匹配一致性指数评估风险。结果:虽然两个实验的平均差异相似,但MAI-VAS和单个读者之间的一致性界限在+SD(标准差)21 (95% CI: 19.65, 21.69) -SD 22 (95% CI: - 22.71, - 20.68)明显低于两个专家读者+SD 31 (95% CI: 32.08, 29.23) -SD 29 (95% CI: - 29.94, - 27.09)。此外,深度学习方法与单个专家的密度读数的乳腺癌风险判别相似,匹配一致性分别为0.628 (95% CI: 0.598, 0.658)和0.624 (95% CI: 0.595, 0.654)。自动方法具有与专家相似的访谈观点一致性,并保持密度四分位数的一致性。结论:人工智能乳腺密度评估工具MAI-VAS与随机选择的专家阅读者之间的观察者间一致性优于两个专家阅读者之间的一致性。基于深度学习的密度方法在不影响乳腺癌风险歧视的情况下提供一致的密度分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信