Ab initio simulation of spin-charge qubits based on bilayer graphene-WSe2 quantum dots.

IF 9.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
npj 2D Materials and Applications Pub Date : 2025-01-01 Epub Date: 2025-06-11 DOI:10.1038/s41699-025-00568-y
Huaiyu Ge, Peter Koopmann, Filip Mrcarica, Otto T P Schmidt, Ilan Bouquet, Mauro Dossena, Mathieu Luisier, Jiang Cao
{"title":"Ab initio simulation of spin-charge qubits based on bilayer graphene-WSe<sub>2</sub> quantum dots.","authors":"Huaiyu Ge, Peter Koopmann, Filip Mrcarica, Otto T P Schmidt, Ilan Bouquet, Mauro Dossena, Mathieu Luisier, Jiang Cao","doi":"10.1038/s41699-025-00568-y","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a spin-charge qubit based on a bilayer graphene and WSe<sub>2</sub> van der Waals heterostructure that together form a quantum dot and demonstrate its functionality from first-principles simulations. Electron and hole confinement as well as electrically controllable spin-orbit coupling (SOC) are modeled by self-consistently solving the Schrödinger and Poisson equations with material parameters extracted from density functional theory as inputs. In both electron and hole quantum dots, we find a two orders of magnitude enhancement of SOC (1.8 meV) compared to intrinsic graphene, in the layer directly adjacent to WSe<sub>2</sub>. Time-dependent investigations of the quantum device reveal rapid qubit gate operation in the order of picoseconds. Our simulations indicate that bilayer graphene and WSe<sub>2</sub> heterostructures provide a promising platform for the processing of quantum information.</p>","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":"9 1","pages":"47"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41699-025-00568-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a spin-charge qubit based on a bilayer graphene and WSe2 van der Waals heterostructure that together form a quantum dot and demonstrate its functionality from first-principles simulations. Electron and hole confinement as well as electrically controllable spin-orbit coupling (SOC) are modeled by self-consistently solving the Schrödinger and Poisson equations with material parameters extracted from density functional theory as inputs. In both electron and hole quantum dots, we find a two orders of magnitude enhancement of SOC (1.8 meV) compared to intrinsic graphene, in the layer directly adjacent to WSe2. Time-dependent investigations of the quantum device reveal rapid qubit gate operation in the order of picoseconds. Our simulations indicate that bilayer graphene and WSe2 heterostructures provide a promising platform for the processing of quantum information.

基于双层石墨烯- wse2量子点的自旋电荷量子比特从头算模拟。
我们提出了一个基于双层石墨烯和WSe2范德华异质结构的自旋电荷量子比特,它们共同形成一个量子点,并从第一性原理模拟中证明了它的功能。以密度泛函理论中提取的材料参数为输入,通过自一致求解Schrödinger和泊松方程,建立了电子和空穴约束以及可控自旋轨道耦合(SOC)的模型。在电子和空穴量子点中,我们发现在直接邻近WSe2的层中,与固有石墨烯相比,SOC (1.8 meV)提高了两个数量级。对量子器件的时间依赖性研究揭示了以皮秒为数量级的快速量子比特门操作。我们的模拟表明,双层石墨烯和WSe2异质结构为量子信息的处理提供了一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj 2D Materials and Applications
npj 2D Materials and Applications Engineering-Mechanics of Materials
CiteScore
14.50
自引率
2.10%
发文量
80
审稿时长
15 weeks
期刊介绍: npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信