Molecule upgrading metal-semiconductor buried contacts for high-performance and high-ideality single-crystal organic thin-film transistors.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-05-22 eCollection Date: 2025-07-01 DOI:10.1093/nsr/nwaf207
Yongji Wang, Wei Deng, Xinmin Shi, Xiaobin Ren, Bingbing Li, Yuan Li, Jiansheng Jie, Xiujuan Zhang, Xiaohong Zhang
{"title":"Molecule upgrading metal-semiconductor buried contacts for high-performance and high-ideality single-crystal organic thin-film transistors.","authors":"Yongji Wang, Wei Deng, Xinmin Shi, Xiaobin Ren, Bingbing Li, Yuan Li, Jiansheng Jie, Xiujuan Zhang, Xiaohong Zhang","doi":"10.1093/nsr/nwaf207","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving high-quality electrical contact at metal/organic semiconductor interfaces is crucial for unlocking the full potential of single-crystal organic thin-film transistors (SC OTFTs). However, the delicate nature of organic single-crystalline films (OSCFs) and the harsh metal deposition process often introduce trap states at the interface, limiting SC-OTFT performance. Here, we present a transparent electrical contact concept that leverages the <i>in situ</i> spontaneous reaction of fluorinated thiol molecules with the electrode, enhancing the buried metal/OSCF contacts. This method significantly lowers the Schottky barrier height by 73.3% and mitigates the Fermi-level pinning effect, resulting in over a 16-fold reduction in contact resistance. As a result, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene ([Formula: see text]-BTBT) OTFTs achieve a high average reliable mobility ([Formula: see text]) of 13.2 [Formula: see text] and a reliability factor up to 89%, surpassing previously reported values. Device simulations indicate that the concentration of tail and deep states is nearly two orders of magnitude lower than that of free states contributing to charge transport, suggesting near-ideal trap-free charge transport. These findings position our molecular contact upgrading method as a promising technology for advancing organic electronics.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 7","pages":"nwaf207"},"PeriodicalIF":16.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163995/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf207","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high-quality electrical contact at metal/organic semiconductor interfaces is crucial for unlocking the full potential of single-crystal organic thin-film transistors (SC OTFTs). However, the delicate nature of organic single-crystalline films (OSCFs) and the harsh metal deposition process often introduce trap states at the interface, limiting SC-OTFT performance. Here, we present a transparent electrical contact concept that leverages the in situ spontaneous reaction of fluorinated thiol molecules with the electrode, enhancing the buried metal/OSCF contacts. This method significantly lowers the Schottky barrier height by 73.3% and mitigates the Fermi-level pinning effect, resulting in over a 16-fold reduction in contact resistance. As a result, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene ([Formula: see text]-BTBT) OTFTs achieve a high average reliable mobility ([Formula: see text]) of 13.2 [Formula: see text] and a reliability factor up to 89%, surpassing previously reported values. Device simulations indicate that the concentration of tail and deep states is nearly two orders of magnitude lower than that of free states contributing to charge transport, suggesting near-ideal trap-free charge transport. These findings position our molecular contact upgrading method as a promising technology for advancing organic electronics.

高性能、高理想单晶有机薄膜晶体管的分子升级金属半导体埋点。
在金属/有机半导体界面实现高质量的电接触对于释放单晶有机薄膜晶体管(SC OTFTs)的全部潜力至关重要。然而,有机单晶薄膜(oscf)的微妙性质和苛刻的金属沉积过程经常在界面处引入陷阱状态,限制了SC-OTFT的性能。在这里,我们提出了一种透明电触点概念,利用氟化硫醇分子与电极的原位自发反应,增强了埋藏的金属/OSCF触点。该方法显著降低了73.3%的肖特基势垒高度,减轻了费米能级的钉住效应,导致接触电阻降低了16倍以上。因此,2,7-二辛基[1]苯并噻吩[3,2-b][1]苯并噻吩([公式:见文本]-BTBT) otft的平均可靠迁移率([公式:见文本])高达13.2,可靠性系数高达89%,超过了先前报道的值。器件模拟表明,尾态和深态的浓度比促进电荷输运的自由态的浓度低近两个数量级,表明接近理想的无阱电荷输运。这些发现使我们的分子接触升级方法成为一种有前途的有机电子技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信