Revealing new depths of information with indentation mapping of microstructures.

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mrs Bulletin Pub Date : 2025-01-01 Epub Date: 2025-06-04 DOI:10.1557/s43577-025-00919-6
Edoardo Rossi, Christophe Tromas, Zhiying Liu, Yu Zou, Jeffrey M Wheeler
{"title":"Revealing new depths of information with indentation mapping of microstructures.","authors":"Edoardo Rossi, Christophe Tromas, Zhiying Liu, Yu Zou, Jeffrey M Wheeler","doi":"10.1557/s43577-025-00919-6","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoindentation is crucial in materials science for assessing mechanical properties in submicrometer volumes, and high-speed nanoindentation mapping has evolved it from a localized measurement technique into a scanning-probe-like approach for microstructures, delivering large-area, high-resolution mechanical property maps with more than 200,000 indents in hours. Such mapping enables direct imaging of hardness and modulus variations, phase boundaries, and local deformation behaviors in materials where heterogeneity governs mechanical performance. By correlating these mechanical maps with composition, orientation, and phase data from complementary analytical techniques, deep multidimensional data sets reveal the complex interplay between structure, processing, and properties. Such data sets increasingly demand advanced statistical clustering, machine learning, and deep learning for classification, trend extraction, and phase identification. Moving forward, high-speed nanoindentation is anticipated to operate under <i>operando</i> conditions and advanced mechanical modalities, offering new insights into interfacial deformation, anisotropic behavior, and the broader challenges of materials design and performance.</p><p><strong>Graphical abstract: </strong>Schematic representation of high-speed nanoindentation mapping revealing microstructural heterogeneities in mechanical response. The indenter tip rapidly probes the surface, generating property maps sensitive to features such as twinning, recrystallization, segregation, precipitates, and sintered phases. These mechanical maps can be directly correlated with crystallographic and phase information from Electron Backscatter Diffraction (EBSD) and elemental composition from Energy-Dispersive X-ray Spectroscopy (EDS). Measurements can be performed operando, i.e., under real-time and service-relevant environmental conditions (e.g., temperature, atmosphere), enabling direct analysis of structure-property-performance relationships at the microstructural scale.</p>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"50 6","pages":"715-725"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-025-00919-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoindentation is crucial in materials science for assessing mechanical properties in submicrometer volumes, and high-speed nanoindentation mapping has evolved it from a localized measurement technique into a scanning-probe-like approach for microstructures, delivering large-area, high-resolution mechanical property maps with more than 200,000 indents in hours. Such mapping enables direct imaging of hardness and modulus variations, phase boundaries, and local deformation behaviors in materials where heterogeneity governs mechanical performance. By correlating these mechanical maps with composition, orientation, and phase data from complementary analytical techniques, deep multidimensional data sets reveal the complex interplay between structure, processing, and properties. Such data sets increasingly demand advanced statistical clustering, machine learning, and deep learning for classification, trend extraction, and phase identification. Moving forward, high-speed nanoindentation is anticipated to operate under operando conditions and advanced mechanical modalities, offering new insights into interfacial deformation, anisotropic behavior, and the broader challenges of materials design and performance.

Graphical abstract: Schematic representation of high-speed nanoindentation mapping revealing microstructural heterogeneities in mechanical response. The indenter tip rapidly probes the surface, generating property maps sensitive to features such as twinning, recrystallization, segregation, precipitates, and sintered phases. These mechanical maps can be directly correlated with crystallographic and phase information from Electron Backscatter Diffraction (EBSD) and elemental composition from Energy-Dispersive X-ray Spectroscopy (EDS). Measurements can be performed operando, i.e., under real-time and service-relevant environmental conditions (e.g., temperature, atmosphere), enabling direct analysis of structure-property-performance relationships at the microstructural scale.

揭示新的深度信息与压痕映射的微观结构。
纳米压痕在材料科学中对于评估亚微米体积的机械性能至关重要,高速纳米压痕测绘使其从一种局部测量技术发展成为一种类似扫描探针的微结构方法,可以在数小时内提供具有超过200,000个压痕的大面积,高分辨率机械性能图。这种映射可以直接成像硬度和模量变化,相边界,以及材料的局部变形行为,其中非均匀性支配着机械性能。通过将这些力学图与来自互补分析技术的成分、取向和相数据相关联,深度多维数据集揭示了结构、加工和性能之间复杂的相互作用。这些数据集越来越需要先进的统计聚类、机器学习和深度学习来进行分类、趋势提取和阶段识别。展望未来,高速纳米压痕有望在操作条件和先进的机械模式下运行,为界面变形、各向异性行为以及材料设计和性能的更广泛挑战提供新的见解。图形摘要:高速纳米压痕映射的示意图,揭示了机械响应中的微观结构异质性。压头尖端快速探测表面,生成对孪生、再结晶、偏析、沉淀和烧结相等特征敏感的属性图。这些机械图可以与电子背散射衍射(EBSD)的晶体学和相位信息以及能量色散x射线光谱(EDS)的元素组成直接相关。测量可以在操作条件下进行,即在实时和与服务相关的环境条件下(例如,温度,大气),可以在微观结构尺度上直接分析结构-性能-性能关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mrs Bulletin
Mrs Bulletin 工程技术-材料科学:综合
CiteScore
7.40
自引率
2.00%
发文量
193
审稿时长
4-8 weeks
期刊介绍: MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信